. 24/7 Space News .
STELLAR CHEMISTRY
The origin of the first structures formed in galaxies like the Milky Way identified
by Staff Writers
La Palma (SPX) Jun 08, 2021

Image of the deep sky study by the Hubble Space Telescope, called GOODS-N (Great Observatories Origins Deep Survey - North).

An international team of scientists led from the Centre for Astrobiology (CAB, CSIC-INTA), with participation from the Instituto de Astrofisica de Canarias (IAC), has used the Gran Telescopio Canarias (GTC) to study a representative sample of galaxies, both disc and spheroidal, in a deep sky zone in the constellation of the Great Bear to characterize the properties of the stellar populations of galactic bulges. The researchers have been able to determine the mode of formation and development of these galactic structures. The results of this study were recently published in The Astrophysical Journal.

The researchers focused their study on massive disc and spheroidal galaxies, using imaging data from the Hubble Space Telescope and spectroscopic data from the SHARDS (Survey for High-z Absorption Red and Dead Sources) project, a programme of observations over the complete GOODS-N (Great Observatories Origins Deep Survey - North) region through 25 different filters taken with the OSIRIS instrument on the Gran Telescopio Canarias (GTC), the largest optical and infrared telescope in the world, at the Roque de los Muchachos Observatory (Garafia, La Palma, Canary Islands).

Analysis of the data allowed the researchers to discover something unexpected: the bulges of the disc galaxies were formed in two waves. One third of the bulges in disc galaxies were formed at redshift 6.2, which corresponds to an early epoch in the Universe, when it was only 5% of its present age, around 900 million years old.

"These bulges are the relics of the first structures formed in the Universe, which we have found hidden in local disc galaxies", explains Luca Costantin, a researcher at the CAB within a programme of Attracting Talent of the Community of Madrid, and the first author on the paper.

But in contrast, almost two thirds of the bulges observed show a mean value of redshift of around 1.3, which means that they were formed much more recently, corresponding to an age of four thousand million years, or almost 35% of the age of the Universe.

A peculiar characteristic which permits the distinction between the two waves is that the central bulges of the first wave, the older bulges, are more compact and dense than those formed in the second, more recent wave. In addition, the data from the spheroidal galaxies in the sample show a mean redshift value of 1.1, which suggests that they formed in the same general time as the bulges of the second wave.

For Jairo Mendez Abreu, a researcher at the University of Granada (UGR) and a co-author of the article, who was formerly a Severo Ochoa postdoctoral researcher at the IAC, "the idea behind the technique used to observe the stars in the central bulge is fairly simple, but it has not been possible to apply it until the recent development of methods which have allowed us to separate the light from the stars in the central bulge from those in the disc, to be specific the GASP2D and C2D algorithms, which we have developed recently and which have enabled us to achieve unprecedented accuracy".

Another important result of the study is that the two waves of bulge formation differ not only in terms of the ages of their stars, but also in terms of their star formation rates. The data indicate that the stars in the bulges of the first wave formed quickly, on timescales of typically 200 million year. On the contrary, a significant fraction of the stars in the bulges of the second wave required formation times five times longer, some thousand million years.

"We have found that the Universe has two ways of forming the central zones of galaxies like our own: starting early and performing very quickly, or taking time to start, but finally forming a large number of stars in what we know as the bulge", comments Pablo G. Perez Gonzalez, a researcher at the CAB, and Principal Investigator of the SHARDS project, which gave essential data for this study.

In the words of Antonio Cabrera, the Head of Science Operations at the GTC, "SHARDS is a perfect example of what is possible due to the combination of the huge collecting capacity of the GTC and the extraordinary conditions at the Roque de los Muchachos Observatory, to produce 180 hours of data with such excellent image quality, essential for the detection of the objects analysed here".

As described by Paola Dimauro, a researcher at the National Observatory of Brazil and a co-author of this article, "this study has allowed us to explore the morphological evolution and the history of the assembly of the structural components of the galaxies, analagous to archaeological studies, analysing the information encoded in the millions of stars of each galaxy. The interesting point was to find that not all the structures were formed at the same time, or in the same way".

The results of this study have allowed the observers to establish a curious parallel between the formation and the evolution through time of the disc galaxies studies and the creation and development of a large city during the centuries.

Just as we find that some large cities have historic centres, which are older and house the oldest buildings in cluttered narrow streets, the results of this work suggest that some of the centres of massive disc galaxies harbour some of the oldest spheroids formed in the Universe, which have continued to acquire material, forming discs more slowly, the new city outskirts in our analogy.

Research paper


Related Links
Instituto de Astrofisica de Canarias
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
UMass Amherst astronomer reveals never-before-seen detail of the center of our galaxy
Amherst MA (SPX) May 28, 2021
New research by University of Massachusetts Amherst astronomer Daniel Wang reveals, with unprecedented clarity, details of violent phenomena in the center of our galaxy. The images, published recently in Monthly Notices of the Royal Astronomical Society, document an X-ray thread, G0.17-0.41, which hints at a previously unknown interstellar mechanism that may govern the energy flow and potentially the evolution of the Milky Way. "The galaxy is like an ecosystem," says Wang, a professor in UMass Amh ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's new $23 million space commode system is more than just a toilet

China accuses US of 'paranoid delusion' over huge innovation bill

TikToker in space: Virgin Galactic to send up well-known researcher

Amazon's Jeff Bezos to go to space on Blue Origin rocket

STELLAR CHEMISTRY
Scientists identify distinctive deep infrasound rumbles of space launches

SpaceX Falcon 9 rocket launches cargo to space station

Launch of competition for young people to help make UK spaceflight history

SpaceX's night-time launch sends SiriusXM satellite into orbit

STELLAR CHEMISTRY
ExoMars rover twin begins Earth-based mission in 'Mars Terrain Simulator'

A new water treatment technology could also help Mars explorers

NASA's Mars helicopter Ingenuity flies for 7th time

Perseverance Rover Begins Its First Science Campaign on Mars

STELLAR CHEMISTRY
Manned space mission preps for takeoff

Tianzhou 2 docks with China's new station core module

Spacewalks planned for Shenzhou missions

China cargo craft docks with space station module

STELLAR CHEMISTRY
Kleos Polar Vigilance Mission Satellites dispatched to Cape Canaveral for Launch

GomSpace wins contract to develop satellites for global air traffic management consortium

GMV supplies operations centre for the new generation of Yahsat satellites

European space program seeks first disabled astronaut

STELLAR CHEMISTRY
New spacecraft will use lasers to transmit video, data in seconds

New connector for sustainable structures on Earth and in space

Radiation-hardened MOSFET qualified for commercial and military satellites and space power solutions

SpaceChain to test On-orbit Ethereum Multisignature Transaction Services on ISS

STELLAR CHEMISTRY
Liquid water on exomoons of free-floating planets

Scientists discover new exoplanet with an atmosphere ripe for study

Did heat from impacts on asteroids provide the ingredients for life on Earth?

Frozen rotifer reanimated after 24,000 years in the Arctic tundra

STELLAR CHEMISTRY
First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede

Jupiter antenna that came in from the cold









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.