. | . |
The missing piece to faster, cheaper and more accurate 3D mapping by Staff Writers Lausanne, Switzerland (SPX) May 20, 2022
Three-dimensional (3D) mapping is a very useful tool, such as for monitoring construction sites, tracking the effects of climate change on ecosystems and verifying the safety of roads and bridges. However, the technology currently used to automate the mapping process is limited, making it a long and costly endeavor. "Switzerland is currently mapping its entire landscape using airborne laser scanners - the first time since 2000. But the process will take four to five years since the scanners have to fly at an altitude below one kilometer if they are to collect data with sufficient detail and accuracy," says Jan Skaloud, a senior scientist at the Geodetic Engineering Laboratory (Topo) within EPFL's School of Architecture, Civil and Environmental Engineering (ENAC). "With our method, surveyors can send laser scanners as high as five kilometers and still maintain accuracy. Our lasers are more sensitive and can beam light over a much wider area, making the process five times faster." The method is described in a paper published in ISPRS Journal of Photogrammetry and Remote Sensing by Davide Cucci, a senior research associate at the Research Center for Statistics of the Geneva School of Economics and Management of the University of Geneva, who works with Topo regularly, Jan Skaloud, and Aurelien Brun, lead author, a recent Master's graduate from EPFL and winner of an award from the Western Switzerland Association of Surveyor Engineers (IGSO).
Missing the point But lasers' accuracy is often lost when they're mounted on drones or other moving vehicles, especially in areas with numerous obstacles like dense cities, underground infrastructure sites, and places where GPS signals are interrupted. This results in gaps and misalignments in the datapoints used to generate 3D maps (also known as laser-point clouds), and can lead to double vision of scanned objects. These errors must be corrected manually before a map can be used. "For now, there's no way to generate perfectly aligned 3D maps without a manual data-correction step," says Cucci. "A lot of semi-automatic methods are being explored to overcome this problem, but ours has the advantage of resolving the issue directly at the scanner level, where measurements are taken, eliminating the need to subsequently make corrections. It's also fully software-driven, meaning it can be implemented quickly and seamlessly by end users."
On the road to automation "We're bringing more automation to 3D mapping technology, which will go a long way towards improving its efficiency and productivity and allow for a much wider range of applications," says Skaloud.
Research Report:Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks
Lockheed Martin's TPY-4 Radar completes production setup now shipping worldwide Syracuse NY (SPX) May 06, 2022 The world's most advanced and capable transportable or fixed air defense long-range radar, Lockheed Martin's first AN/TPY-4 radar - recently selected by the U.S. Air Force for the Three Dimensional Expeditionary Long Range Radar (3DELRR) Rapid Prototyping program - has completed production marking availability to the world. The technology that enables TPY-4 provides the capability required for today's threats and unprecedented flexibility to adjust quickly to those that emerge over time. "Lockheed ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |