. | . |
The materials engineers are developing environmentally friendly materials by Staff Writers Tartu, Estonia (SPX) Nov 01, 2018
Recently the research article "A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning" written by the researchers of Tallinn University of Technology was published in a leading peer-reviewed journal Carbon. The article introduces nanofibers, a material produced by the electrospinning device at the Laboratory of Polymers and Textile Technology in Tallinn University of Technology, and their expanding range of applications. It is not possible to produce fibers with a diameter smaller than a micrometer by using conventional fiber spinning methods. Therefore, electrospinning technology is introduced, by which nanofibers are created by applying high voltage to polymer solution. The beginning of the 20th century can be considered to be the starting point of electrospinning as a scientific discipline, the quest for industrial applications started 50 years ago. In recent years, there has been a surge of interest in electrospinning. One of the co-authors of the research article, Head of the Laboratory of Polymers and Textile Technology of Tallinn University of Technology, Professor Andres Krumme says, "The electrospun carbon nanomaterial can also be called smart fabric. The nanofibers forming the material are 100 times thinner in diameter than hair, being however extremely strong, tough, flexible and due to carbon content also conductive. The material allows efficient energy storage owing to its high specific surface area." The specific properties of nanofibers render it a promising material for future applications: + In environmental protection the non-woven fabric made of nanofibers can be used to clean contaminated air or water from fine particulate matter and heavy metals. In agriculture the smart fabric can be used e.g. as a shade cloth for plants to keep away insect pests (which is, of course, more effective than the existing shade cloths). + In medicine the nanofabric can, due to the environment similar to the natural environment of a human body, be used to grow cells and produce antibacterial plasters and bandages. Nanofibers can be used to create cell culture media (stem cells are seeded on a biopolymer mat) and the grown stem cells can then be transplanted e.g. to damaged human skin. + In clothing industry nanofibrous materials can be used to produce special protective clothing containing energy saving and collecting fibers (the collected energy can be used e.g. to charge a mobile phone). Nanofibrous electrodes with enhanced mechanical properties can be used as components of smart clothing to monitor and affect the health condition of the wearer. Garment sensors provide information about the wearer's needs as well as potential emergency situations (rescuers, fishermen, etc.). "Cellulose used as the original raw material of smart fabric is very acceptable for human body due to its properties, i.e. the raw material used in polymer fabric is bio-based and supports the natural carbon cycle," Andres Krumme says.
New composite material that can cool itself down under extreme temperatures Nottingham UK (SPX) Oct 29, 2018 A cutting-edge material, inspired by nature, that can regulate its own temperature and could equally be used to treat burns and help space capsules withstand atmospheric forces is under development at the University of Nottingham. The research paper, Temperature - dependent polymer absorber as a switchable state NIR reactor, is published in the journal Scientific Reports Friday 26 October. "A major challenge in material science is to work out how to regulate man-made material temperature as ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |