. 24/7 Space News .
TECTONICS
The lower mantle can be oxidized in the presence of water
by Staff Writers
Beijing, China (SPX) May 25, 2020

The schematic artwork shows a boundary within the lower mantle at the depth of 1900 km. Below 1900 km, the interaction between water and mantle is triggered.

If we took a journey from Earth's surface to the center, the midway point locates roughly at 1900 km depth in the lower mantle. The lower mantle ranges from 660 to 2900 km depth and occupies 55% of our planet by volume. The chemical composition of the lower mantle is rather simple. It has long been pictured as being made up of 2 major minerals (~95%), namely bridgmanite and ferropericlase. Until recently, this model is directly challenged by a set of discoveries in the lower mantle.

"One of the major lower mantle compositions, ferropericlase (Mg,Fe)O, turns into a pyrite-type structure upon meeting water. This intriguing chemical reaction only occurs at Earth's deep lower mantle which is defined in depths between 1900 and 2900 km" said Qingyang Hu from HPSTAR. "The reaction produces so-called oxygen excessive phases, or simply superoxides. The lower mantle is oxidized in the presence of water."

Generally, when all the oxygen atoms in a compound are bonded with metal atoms, they are called oxides. However, if a compound has paired oxygen atoms, like oxygen-oxygen bonding, it becomes a superoxide. Although superoxide is rarely found in nature, it might be common in Earth's deep lower mantle.

"We also found that olivine and its high-pressure phase wadsleyite, the dominating minerals in the upper mantle, decompose to generate superoxides when subducting down into the deep mantle with water." added by Jin Liu from at HPSTAR.

Few approaches are available for scientists to probe into the lower mantle mineralogy given its depth. "Our experiments are very challenging. We input appropriate parameters like pressure, temperature, and starting minerals. Then we investigated the outputs including chemical reactions, new mineral assemblages, and their density profiles. Those parameters allow us to better constrain the nature of the lower mantle and its oxidation state." Contrary to the paradigm that the lower mantle is highly reduced, our results indicate that the deep lower mantle is at least locally oxidized wherever water is present.

The team members proceeded with minerals existing on Earth's surface, by squeezing them between two pieces of diamond anvils to generate about 100,000,000 times the atmospheric pressure at sea level, heating them up using infrared laser, before analyzing the samples using a battery of x-ray and electron probes. The experiments have mimicked the extreme pressure-temperatures conditions found in Earth's deep lower mantle.

Previous experiments explored a dry mineral assembly in the absence of water. Those experiments reported that bridgmanite (and/or post-bridgmanite) and ferropericlase are the most abundant and stable minerals throughout the lower mantle. However, when water is introduced, ferropericlase would be partially oxidized to superoxide under the deep lower mantle conditions. The superoxide is verified to stay in harmony with bridgmanite and post-bridgmanite.

This new water-mantle chemistry can be closely linked to the water cycling in the solid Earth. Every year, billions of tons of ocean water falls into the deep Earth at tectonic plate boundaries. While some water returns via underwater volcanoes and hot vents, others goes deep into the Earth's interiors.

"Our experiments indicate the deep water is an essential part of mantle chemistry. The water cycling can extend to the deep lower mantle where water has extraordinary oxidation power, producing highly oxidized superoxide and releasing hydrogen." suggested by Dr. Ho-kwang Mao from HPSTAR. "The lower mantle can be oxidized and reduced at the same time."

Research Report: "Mineralogy of the deep lower mantle in the presence of H2O"


Related Links
Science China Press
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
Caves tell us that Australia's mountains are still growing
Melbourne, Australia (SPX) May 21, 2020
Australia has often been unfairly portrayed as an old and idle continent with little geological activity, but new research suggests that we remain geologically active and that some of our mountains are still growing. The University of Melbourne study reveals that parts of the Eastern Highlands of Victoria, including popular skiing destinations such as Mt Baw Baw and Mt Buller, may be as young as five million years, not 90 million years as originally thought. John Engel is one of four scienti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Last of NASA's vital, versatile science 'EXPRESS Racks' heads to Space Station

Searching with Sasquatch: Recovering Orion

Roscosmos confirms signing contract for NASA Astronaut's flight to ISS

JAXA HTV-9 spacecraft carries science, technology to ISS

TECTONICS
Soyuz launch from Kourou postponed until 2021, 2 others to proceed

Atlas 5 launches X-38B for USSF-7 mission

Hypersonic Test Center for US Army speeds ahead

NASA takes preliminary steps to resume SLS Core Stage testing work

TECTONICS
NASA's Perseverance Rover goes through trials by fire, ice, light and sound

Mystery of lava-like flows on Mars solved by scientists

ExoMars rover upgrades and parachute tests

The horst and graben landscape of Ascuris Planum

TECTONICS
More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

China's experimental new-generation manned spaceship works normally in orbit

TECTONICS
RUAG Space offers new electronics for constellations

Intelsat files for bankruptcy, seeks to restructure

Bankrupt OneWeb seeks DoD financing to keep assets from Chinese purchase

ESA Startup competition: next steps

TECTONICS
Amazon puts heat on eSports giants with 'Crucible'

Fireflies helps companies get more out of meetings

Study unveils details of how a widely used catalyst splits water

Emissions from road construction could be halved using today's technology

TECTONICS
Exoplanet climate 'decoder' aids search for life

TRAPPIST-1 planetary orbits not misaligned

Amsterdam researchers observe iron in exoplanetary atmosphere

Scientists reveal solar system's oldest molecular fluids could hold the key to early life

TECTONICS
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.