. | . |
The case for onboard carbon dioxide capture on long-range vehicles by Staff Writers Chicago IL (SPX) Aug 19, 2021
When people talk about how to eliminate vehicles' carbon dioxide (CO2) emission, often the conversation often focuses on electrifying cars, trucks and buses. Yet cargo and tanker ships, which are responsible for 3% of all CO2 emissions, are rarely a part of the discussion. Now a Northwestern University research team offers a practical way to make ships CO2 neutral - or even CO2 negative - with CO2-capturing solid oxide fuel cells. After "burning" traditional carbon-based fuels, the fuel cell generates concentrated CO2 that can be stored on-board the ship. From there, the CO2 can either be sequestered or recycled into a renewable hydrocarbon fuel. The team presents its analysis in "Viability of vehicles utilizing on-board CO2 capture," published (Aug. 18) in the journal ACS Energy Letters. In the paper, the team looks at various factors, including fuel storage volumes and mass requirements for a wide range of vehicle classes - from light-duty passenger vehicles to tanker ships - and compares onboard CO2 capture to battery electric and hydrogen fuel cell options. "It might be harder for people to see onboard CO2 capture as climate friendly because it uses conventional, carbon-based fuels," said Northwestern's Scott A. Barnett, senior author of the study. "People tend to assume hydrogen fuel cells and electric vehicles are more climate friendly. In reality, they often are not. Electricity might come from burning coal, and hydrogen is often produced by natural gas, which generates a lot of CO2 in the process." An expert on solid oxide fuel cells, Barnett is a professor of materials science and engineering at Northwestern's McCormick School of Engineering. He coauthored the paper with Travis Schmauss, a Ph.D. candidate in his research group.
Why batteries aren't a viable solution "Some tanker ships require enough fuel to circumnavigate the globe as a part of their regular multivoyage operation," Barnett said. "We calculated that the battery pack for a long-range tanker would take up more room than the storage capacity of the ship. A hydrogen fuel tank also would be too large. When it comes to long-range vehicles, carbon-based fuel combined with on-board CO2 capture is arguably the best way to make these vehicles CO2 neutral." The proposed method also has potential advantages for shorter-range vehicles. Battery electric and hydrogen fuel cells, however, are already being implemented for those vehicle types, so the researchers instead suggest implementing a CO2-neutral range extender.
Storage solution "The solid oxide fuel cell is critical because it burns the fuel with pure oxygen, yielding a concentrated CO2 product that is storable," Schmauss said. "If we just burned the fuel with air, it would be heavily diluted with nitrogen, yielding too much gas to store. When the concentrated CO2 is compressed, it can be stored in a volume not much larger than that needed for the fuel, which saves space." "This technology really doesn't have any major hurdles to making it work," Barnett added. "You just have to replace the fuel tank with the double-chamber tank and add CO2compressors. And, of course, the infrastructure eventually has to be developed to off-load the CO2 and either sequester or use it."
Moving toward net-zero
Research Report: "Viability of vehicles utilizing on-board CO2 capture"
Designing better batteries for electric vehicles Boston MA (SPX) Aug 17, 2021 The urgent need to cut carbon emissions is prompting a rapid move toward electrified mobility and expanded deployment of solar and wind on the electric grid. If those trends escalate as expected, the need for better methods of storing electrical energy will intensify. "We need all the strategies we can get to address the threat of climate change," says Elsa Olivetti PhD '07, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. "Obviously, developing technolog ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |