. 24/7 Space News .
TECTONICS
The age of the Earth's inner core revised
by Staff Writers
Austin TX (SPX) Aug 24, 2020

A computer simulation of the Earth's magnetic field, which is generated by heat transfer in the Earth's core.

By creating conditions akin to the center of the Earth inside a laboratory chamber, researchers have improved the estimate of the age of our planet's solid inner core, putting it at 1 billion to 1.3 billion years old.

The results place the core at the younger end of an age spectrum that usually runs from about 1.3 billion to 4.5 billion years, but they also make it a good bit older than a recent estimate of only 565 million years.

What's more, the experiments and accompanying theories help pin down the magnitude of how the core conducts heat, and the energy sources that power the planet's geodynamo - the mechanism that sustains the Earth's magnetic field, which keeps compasses pointing north and helps protect life from harmful cosmic rays.

"People are really curious and excited about knowing about the origin of the geodynamo, the strength of the magnetic field, because they all contribute to a planet's habitability," said Jung-Fu Lin, a professor at The University of Texas at Austin's Jackson School of Geosciences who led the research.

The Earth's core is made mostly of iron, with the inner core being solid and the outer core being liquid. The effectiveness of the iron in transferring heat through conduction - known as thermal conductivity - is key to determining a number of other attributes about the core, including when the inner core formed.

Over the years, estimates for core age and conductivity have gone from very old and relatively low, to very young and relatively high. But these younger estimates have also created a paradox, where the core would have had to reach unrealistically high temperatures to maintain the geodynamo for billions of years before the formation of the inner core.

The new research solves that paradox by finding a solution that keeps the temperature of the core within realistic parameters. Finding that solution depended on directly measuring the conductivity of iron under corelike conditions - where pressure is greater than 1 million atmospheres and temperatures can rival those found on the surface of the sun.

The researchers achieved these conditions by squeezing laser-heated samples of iron between two diamond anvils. It wasn't an easy feat. It took two years to get suitable results.

"We encountered many problems and failed several times, which made us frustrated, and we almost gave up," said article co-author Youjun Zhang, an associate professor at Sichuan University in China. "With the constructive comments and encouragement by professor Jung-Fu Lin, we finally worked it out after several test runs."

The newly measured conductivity is 30% to 50% less than the conductivity of the young core estimate, and it suggests that the geodynamo was maintained by two different energy sources and mechanisms: thermal convection and compositional convection. At first the geodynamo was maintained by thermal convection alone. Now, each mechanism plays about an equally important role.

Lin said that with this improved information on conductivity and heat transfer over time, the researchers could make a more precise estimate of the age of the inner core.

"Once you actually know how much of that heat flux from the outer core to the lower mantle, you can actually think about when did the Earth cool sufficiently to the point that the inner core starts to crystalize," he said.

This revised age of the inner core could correlate with a spike in the strength of the Earth's magnetic field as recorded by the arrangement of magnetic materials in rocks that were formed around this time. Together, the evidence suggests that the formation of the inner core was an essential part of creating today's robust magnetic fields.

The results were published on Aug.13 in the journal Physical Review Letters.

Research paper


Related Links
University Of Texas At Austin
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
Is the Earth's transition zone deforming like the upper mantle
Matsuyama, Japan (SPX) Aug 03, 2020
Despite being composed of solid rocks, the Earth's mantle, which extends to a depth of ~2890 km below the crust, undergoes convective flow by removing heat from the Earth's interior. This process involves mass transfer by subduction of cold tectonic plates from and the ascent of hot plumes towards the Earth's surface, responsible for many large-scale geological features, such as Earthquakes and volcanism. T hrough a combination of previous seismological and mineral physics studies, it is well know ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Moonstruck 'aroma sculptor' builds scent from space

A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

TECTONICS
NASA begins installing orion adapter for first Aartemis lunar flight

NASA, SpaceX targeting October for next astronaut launch

Ariane 5's third launch of 2020

Aerojet Rocketdyne to provide ULA's Vulcan Centaur Key Propulsion for future Air Force Launch Services

TECTONICS
Ingenuity Mars Helicopter recharges its batteries in flight

NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

TECTONICS
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

TECTONICS
New UK space projects to boost global sustainable development receive cash boost

SIA urges FCC to ensure spectrum continues to provide satellite broadband connectivity

Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

SES selects SpaceX for launch of new C-Band satellites

TECTONICS
'FreeFortnite' tournament taunts Apple amid legal battle

A bit of gold grants crystals new electric properties

New Flight Simulator game takes off with French studio in cockpit

Altius Space Machines to support on-orbit servicing for the Dynetics Human Landing System

TECTONICS
The most sensitive instrument in the search for life in space comes from Bern

Microbes living on air a global phenomenon

Microbes in the seabed survive on little energy

NASA's planet hunter completes its primary mission

TECTONICS
Ganymede covered by giant crater

Huge ring-like structure on Ganymede's surface may have been caused by violent impact

Inside the ice giants of space

Ammonia sparks unexpected, exotic lightning on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.