. 24/7 Space News .
The Universe, where space-time becomes discrete
by Staff Writers
Trieste, Italy (SPX) Apr 25, 2016

"At LENS they're now building a quantum harmonic oscillator: a silicon chip weighing a few micrograms which after being cooled to temperatures close to absolute zero, is illuminated with a laser light and starts to oscillate harmonically" explains Liberati. "Our theoretical model accommodates the possibility of testing non-local effects on quantum objects having a non-negligible mass"....

Our experience of space-time is that of a continuous object, without gaps or discontinuities, just as it is described by classical physics. For some quantum gravity models however, the texture of space-time is "granular" at tiny scales (below the so-called Planck scale, 10-33 cm), as if it were a variable mesh of solids and voids (or a complex foam). One of the great problems of physics today is to understand the passage from a continuous to a discrete description of spacetime: is there an abrupt change or is there gradual transition? Where does the change occur?

The separation between one world and the other creates problems for physicists: for example, how can we describe gravity - explained so well by classical physics - according to quantum mechanics? Quantum gravity is in fact a field of study in which no consolidated and shared theories exist as yet. There are, however, "scenarios", which offer possible interpretations of quantum gravity subject to different constraints, and which await experimental confirmation or confutation.

One of the problems to be solved in this respect is that if space-time is granular beyond a certain scale it means that there is a "basic scale", a fundamental unit that cannot be broken down into anything smaller, a hypothesis that clashes with Einstein's theory of special relativity.

Imagine holding a ruler in one hand: according to special relativity, to an observer moving in a straight line at a constant speed (close to the speed of light) relative to you, the ruler would appear shorter. But what happens if the ruler has the length of the fundamental scale?

For special relativity, the ruler would still appear shorter than this unit of measurement. Special relativity is therefore clearly incompatible with the introduction of a basic graininess of spacetime. Suggesting the existence of this basic scale, say the physicists, means to violate Lorentz invariance, the fundamental tenet of special relativity.

So how can the two be reconciled? Physicists can either hypothesize violations of Lorentz invariance, but have to satisfy very strict constraints (and this has been the preferred approach so far), or they must find a way to avoid the violation and find a scenario that is compatible with both granularity and special relativity.

This scenario is in fact implemented by some quantum gravity models such as String Field Theory and Causal Set Theory. The problem to be addressed, however, was how to test their predictions experimentally given that the effects of these theories are much less apparent than are those of the models that violate special relativity.

One solution to this impasse has now been put forward by Stefano Liberati, SISSA professor, and colleagues in their latest publication. The study was conducted with the participation of researchers from the LENS in Florence (Francesco Marin and Francesco Marino) and from the INFN in Padua (Antonello Ortolan). Other SISSA scientists taking part in the study, in addition to Liberati, were PhD student Alessio Belenchia and postdoc Dionigi Benincasa. The research was funded by a grant of the John Templeton Foundation.

"We respect Lorentz invariance, but everything comes at a price, which in this case is the introduction of non-local effects", comments Liberati. The scenario studied by Liberati and colleagues in fact salvages special relativity but introduces the possibility that physics at a certain point in space-time can be affected by what happens not only in proximity to that point but also at regions very far from it.

"Clearly we do not violate causality nor do we presuppose information that travels faster than light", points out the scientist. "We do, however, introduce a need to know the global structure so as to understand what's going on at a local level".

From theory to facts
There's something else that makes Liberati and colleagues' model almost unique, and no doubt highly precious: it is formulated in such a way as to make experimental testing possible.

"To develop our reasoning we worked side by side with the experimental physicists of the Florence LENS. We are in fact already working on developing the experiments". With these measurements, Liberati and colleagues may be able to identify the boundary, or transition zone, where space-time becomes granular and physics non-local.

"At LENS they're now building a quantum harmonic oscillator: a silicon chip weighing a few micrograms which after being cooled to temperatures close to absolute zero, is illuminated with a laser light and starts to oscillate harmonically" explains Liberati. "Our theoretical model accommodates the possibility of testing non-local effects on quantum objects having a non-negligible mass".

This is an important aspect: a theoretical scenario that accounts for quantum effects without violating special relativity also implies that these effects at our scales must necessarily be very small (otherwise we would already have observed them). In order to test them, we need to be able to observe them in some way or other.

According to our model, it is possible to see the effects in 'borderline' objects, that is, objects that are undeniably quantum objects but having a size where the mass - i.e., the 'charge' associated with gravity (as electrical charge is associated with electrical field) - is still substantial."

"On the basis of the proposed model, we formulated predictions about how the system would oscillate", says Liberati. "Two predictions, to be precise: one function that describes the system without non-local effects and one that describes it with local effects". The model is particularly robust since, as Liberati explains, the difference in the pattern described in the two cases cannot be generated by environmental influences on the oscillator.

"So it's a 'win-win' situation: if we don't see the effect, we can raise the bar of the energies where to look for the transition. Above all, the experiments being prepared should be able to push the constraints on the non-locality scale to the Planck scale. In this case , we go as far as to exclude these scenarios with non-locality. And this in itself would be a good result, as we would be cutting down the number of possible theoretical scenarios", concludes Liberati.

"If on the other hand we were to observe the effect, well, in that case we would be confirming the existence of non-local effects, thus paving the way for an altogether new physics."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
International School of Advanced Studies (SISSA
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Swiss watch exports plunge on Hong Kong, US slowdown
Zurich (AFP) April 21, 2016
Global exports of Swiss watches plummeted in March, amid a dramatic contraction of sales in main markets Hong Kong and the United States. Exports fell 16.1 percent from March 2015 to 1.5 billion Swiss francs ($1.5 billion, 1.4 billion euros), the Federation of the Swiss Watch Industry (FHS) said. In 2015, watch exports recorded their first full-year decline since 2009, contracting by 3.3 ... read more

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

NASA seeks industry ideas for an advanced Mars satellite

Rover mini-walkabout to find clay mineral continues

Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

Menstruation in spaceflight: Options for astronauts

Mobile phone technology propels Starshot's ET space search

A US Department of Space

NASA blasts Orion Service Module with giant horns

Chinese scientists develop mammal embryos in space for first time

Re-entry capsule of SJ-10 lands in Northern China

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

Soyuz meets its multi-satellite payload for Friday's Arianespace launch

Europe to launch satellites for Earth, Einstein

Sentinel-1B in position for liftoff

Arianespace cooperation with Russia remains smooth amid sanctions

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

NASA studies 3D printing for building densely populated electronics

Thanks, actin, for the memories

Electrons slide through the hourglass on surface of bizarre material

Simple 3-D fabrication technique for bio-inspired hierarchical structures

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.