. 24/7 Space News .
SOLAR SCIENCE
The Proba-3 program takes an important step in the integration of its two satellites
by Staff Writers
Madrid, Spain (SPX) Jan 19, 2022

In addition to the demonstration mission, Proba-3 will conduct a scientific study of the Sun's corona. To do this, the two satellites will create a 150-m long coronagraph that will be able to study the Sun's corona closer to the surface than ever before. The satellites will make up what is called a coronagraph with an external occulter, such that one of the satellites prevents sunlight from directly reaching the camera on the instrument mounted on the other, leaving only the Sun's corona visible. This will be done fully autonomously, with no intervention from the ground to actively control the formation, creating an artificial six-hour eclipse over the second satellite every day.

The Proba-3 program, spearheaded by SENER Aeroespacial, the project's prime contractor for the European Space Agency (ESA), has accomplished several relevant milestones in the integration of the two satellites that will, for the first time, demonstrate a high- precision formation flight in space.

In the future, spacecraft formation flying technology will be used to replace bulky structures (such as telescopes) with small independent platforms, which are easier to launch into space and can be combined to form large assemblies that work as a single entity, while achieving equivalent performance.

In parallel, Proba-3 will perform scientific observations taking images of the Sun's corona by means of a coronagraph instrument, placed in one of the spacecraft. Formation flying technology entails placing one of the two satellites in front of the instrument's lens, thus blocking out the sun's disk and creating an artificial eclipse in flight.

For SENER Aeroespacial, Proba-3 marks a technical milestone, since it is the first time that a Spanish company has led the full development (i.e., is responsible for the entire flight and ground system) of a European Space Agency mission.

The project has made an important step ahead with the start of the integration of the flight equipment, after the delivery of the platforms of the two satellites by Airbus Defence and Space. In this program, Airbus manufactures and integrates the platforms of both satellites.

The first one, called Coronagraph Spacecraft (CSC), contains the main instrument (coronagraph), whereas the second satellite, called Occulter Spacecraft (CSO), carries an occulting disk that cover the sun's disk as seen from the other satellite. Airbus delivered the structure of both satellites already integrated with the propulsion system, harness and the thermal control system. This platform integration was carried out at the company's facilities in Madrid (Spain).

The two satellites are now at the QinetiQ facility in Kruibeke (Belgium). For this program, QinetiQ is leading the activities to develop the avionics system, integrate all the electronic units within the platform, perform overall system verification and prepare the operations. The first flight equipment are already being installed on the OSC, and the integration of the CSC is expected to start early 2022, as this last unit was received in mid-December.

At the same time, SENER Aeroespacial has completed the activities related to the design, manufacturing and testing of the high-stability Optical Bench Assembly (OBA) of the Coronagraph spacecraft. The bench has been assembled in SENER Aeroespacial facility in Bilbao (Spain). The last step has been the integration of the coronagraph instrument, the cornerstone of Proba-3 scientific mission, developed by a consortium led by CSL.

Such integration of the payload in the OBA has been realized by a joint team of CSL and SENER Aeroespacial employees, making use of the CSL facilities in Liege (Belgium). The bench and instrument are now at QinetiQ, ready to be integrated into the CSC.

Once the integration work is complete, an intensive testing campaign will begin prior to the launch planned for 2023.

Proba-3, first precision formation flying mission
Proba-3 is the world's first high-precision formation flying mission in space. The two satellites will stay 150 m apart, forming a large rigid virtual structure, with a relative accuracy between them on the order of millimeters and arcseconds. They will be used to validate the technology needed for precision formation flying.

Formation flying will be a key technique for future space science missions. Among other things, it will be used to develop large telescopes whose main elements (such as lenses and detectors) need to be located far away from one another while at the same time holding their relative positions and distances with a high degree of accuracy and stability. This technology will bypass the need to resort to heavy and bulky deployable structures, which may not fit in current launchers or, at best, would make them extremely expensive to put into orbit and operate.

Scientific study of the Sun
In addition to the demonstration mission, Proba-3 will conduct a scientific study of the Sun's corona. To do this, the two satellites will create a 150-m long coronagraph that will be able to study the Sun's corona closer to the surface than ever before. The satellites will make up what is called a coronagraph with an external occulter, such that one of the satellites prevents sunlight from directly reaching the camera on the instrument mounted on the other, leaving only the Sun's corona visible. This will be done fully autonomously, with no intervention from the ground to actively control the formation, creating an artificial six-hour eclipse over the second satellite every day.

Next phases of Proba-3
The manufacturing, integration and verification phase is already underway and is progressing at a good pace, the goal being to launch Proba-3 in 2023. Following the usual launch and early orbit phase (LEOP), an orbital verification phase will take place that will last for several months before the system is handed over to ESA, which will operate it for the remainder of the mission life, which is expected to last a total of two and a half years.

SENER Aeroespacial is leading the Proba-3 mission, for which it is fully responsible, in close collaboration with an industrial team consisting of QinetiQ, Airbus Defence and Space in Spain, GMV Space and Defence and Spacebel, which encompasses a broad industrial consortium of more than 32 companies from 14 different countries. This is the first time that a Spanish company has led the full development (i.e., is responsible for the entire flight and ground system) of a European Space Agency mission.

Proba-3 is part of ESA's General Support Technology Programme (GSTP), and Spain's participation was made possible thanks to the support of the CDTI (Center for Technological and Industrial Development).


Related Links
PROBA-3
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
New research may help scientists unravel the physics of the solar wind
Minneapolis MN (SPX) Jan 18, 2022
A new study led by University of Minnesota Twin Cities researchers, using data from NASA's Parker Solar Probe, provides insight into what generates and accelerates the solar wind, a stream of charged particles released from the sun's corona. Understanding how the solar wind works can help scientists predict "space weather," or the response to solar activity-such as solar flares-that can impact both astronauts in space and much of the technology people on Earth depend on. The paper is published in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
NASA Solar Sail Mission to Chase Tiny Asteroid After Artemis I Launch

NASA Offers $1 Million for Innovative Systems to Feed Tomorrow's Astronauts

Russian cosmonauts conduct EVA to complete Nauka Lab Module integration to ISS

Five Space Station Research Results Contributing to Deep Space Exploration

SOLAR SCIENCE
NASA prepares final rocket tests for first Artemis moon mission launch

SpaceX ISS freighter splashes down off Florida

Ariane 6 upper stage readies for tests at Europe's Spaceport

Arianespace to launch Microcarb on Vega C

SOLAR SCIENCE
Sols 3362-3363: Sedimentologist's Delight

New control technique uses solar panels to reach desired Mars orbit

Hope for present-day Martian groundwater dries up

Consistent asteroid showers rock previous thinking on Mars craters

SOLAR SCIENCE
China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

SOLAR SCIENCE
OneWeb and Hughes to bring orbital broadband service to India

Summit to ignite Europe's bold space ambitions

Advances in Space Transportation Systems Transforming Space Coast

AGIS signs Kleos' data evaluation contract

SOLAR SCIENCE
China satellite in close encounter with Russian debris: state media

Future trillion dollar 'space economy' threatened by debris, WVU researcher says

Lion will roam above the planet - KP Labs to release their "king of orbit"

Facebook trumpets massive new supercomputer

SOLAR SCIENCE
A planetary dynamical crime scene at 14 Herculis

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

SETI's plan for a sky-monitoring telescope on the moon

Newly-Found Planets On The Edge Of Destruction

SOLAR SCIENCE
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.