Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Taking control of light emission
by Staff Writers
Boston MA (SPX) May 22, 2015


Researchers have shown that a DC voltage applied to layers of graphene and boron nitride can be used to control light emission from a nearby atom. Here, graphene is represented by a maroon-colored top layer; boron nitride is represented by yellow-green lattices below the graphene; and the atom is represented by a grey circle. A low concentration of DC voltage (in blue) allows the light to propagate inside the boron nitride, forming a tightly confined waveguide for optical signals. Image courtesy Anshuman Kumar Srivastava and Jose Luis Olivares/MIT.

Researchers have found a way to couple the properties of different two-dimensional materials to provide an exceptional degree of control over light waves. They say this has the potential to lead to new kinds of light detection, thermal-management systems, and high-resolution imaging devices.

The new findings - using a layer of one-atom-thick graphene deposited on top of a similar 2-D layer of a material called hexagonal boron nitride (hBN) - are published in the journal Nano Letters. The work is co-authored by MIT associate professor of mechanical engineering Nicholas Fang and graduate student Anshuman Kumar, and their co-authors at IBM's T.J. Watson Research Center, Hong Kong Polytechnic University, and the University of Minnesota.

Although the two materials are structurally similar - both composed of hexagonal arrays of atoms that form two-dimensional sheets - they each interact with light quite differently. But the researchers found that these interactions can be complementary, and can couple in ways that afford a great deal of control over the behavior of light.

The hybrid material blocks light when a particular voltage is applied to the graphene, while allowing a special kind of emission and propagation, called "hyperbolicity," when a different voltage is applied - a phenomenon not seen before in optical systems, Fang says. One of the consequences of this unusual behavior is that an extremely thin sheet of material can interact strongly with light, allowing beams to be guided, funneled, and controlled by voltages applied to the sheet.

"This poses a new opportunity to send and receive light over a very confined space," Fang says, and could lead to "unique optical material that has great potential for optical interconnects." Many researchers see improved interconnection of optical and electronic components as a path to more efficient computation and imaging systems.

Light's interaction with graphene produces particles called plasmons, while light interacting with hBN produces phonons. Fang and his colleagues found that when the materials are combined in a certain way, the plasmons and phonons can couple, producing a strong resonance.

The properties of the graphene allow precise control over light, while hBN provides very strong confinement and guidance of the light. Combining the two makes it possible to create new "metamaterials" that marry the advantages of both, the researchers say.

Phaedon Avouris, a researcher at IBM and co-author of the paper, says, "The combination of these two materials provides a unique system that allows the manipulation of optical processes."

The combined materials create a tuned system that can be adjusted to allow light only of certain specific wavelengths or directions to propagate, they say. "We can start to selectively pick some frequencies [to let through], and reject some," Kumar says.

These properties should make it possible, Fang says, to create tiny optical waveguides, about 20 nanometers in size - the same size range as the smallest features that can now be produced in microchips. This could lead to chips that combine optical and electronic components in a single device, with far lower losses than when such devices are made separately and then interconnected, they say.

Co-author Tony Low, a researcher at IBM and the University of Minnesota, says, "Our work paves the way for using 2-D material heterostructures for engineering new optical properties on demand."

Another potential application, Fang says, comes from the ability to switch a light beam on and off at the material's surface; because the material naturally works at near-infrared wavelengths, this could enable new avenues for infrared spectroscopy, he says. "It could even enable single-molecule resolution," Fang says, of biomolecules placed on the hybrid material's surface.

The research team also included Kin Hung Fung of Hong Kong Polytechnic University. The work was supported by the National Science Foundation and the Air Force Office of Scientific Research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
A glass fiber that brings light to a standstill
Vienna, Austria (SPX) Apr 15, 2015
Light is an extremely useful tool for quantum communication, but it has one major disadvantage: it usually travels at the speed of light and cannot be kept in place. A team of scientists at the Vienna University of Technology has now demonstrated that this problem can be solved - not only in strange, unusual quantum systems, but in the glass fiber networks we are already using today. By co ... read more


STELLAR CHEMISTRY
Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

STELLAR CHEMISTRY
NASA Begins Testing Next Mars Lander Insight

The Supreme Council of Parachute Experts

Science Drives NASA's Journey to Mars

The Moon or Mars: Flawed Debate, False Choice - Part One

STELLAR CHEMISTRY
New wave of smart tech on show at Taiwan's Computex

New urban landscape at Taiwan's Computex

Boeing Awarded First Commercial Human Spaceflight Mission

Like Sleeping Beauty, some research lies dormant for decades

STELLAR CHEMISTRY
China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

STELLAR CHEMISTRY
NASA Begins Major Reconfiguration of International Space Station

Roundworms have the Right Stuff

ISS module relocation makes way for Commercial Crew spacecraft

ISS Partners Adjust Spacecraft Schedule

STELLAR CHEMISTRY
Air Force Certifies SpaceX for National Security Space Missions

SpaceX cleared for US military launches

Ariane 5's second launch of 2015

SpaceX cleared for US military launches

STELLAR CHEMISTRY
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

STELLAR CHEMISTRY
Saving money and the environment with 3-D printing

Thin coating on condensers could make power plants more efficient

New computational technique advances color 3D printing process

Scientists make tough biogel structures with 3-D printer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.