Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought
by Staff Writers
Heidelberg, Germany (SPX) Feb 01, 2013


Artist's impression of the gas and dust disk around the young star TW Hydrae. New measurements using the Herschel space telescope have shown that the mass of the disk is greater than previously thought. Image credit: Axel M. Quetz (MPIA).

Using ESA's Herschel Space Telescope, astronomers including Thomas Henning from the Max Planck Institute for Astronomy in Heidelberg have used a new method to determine the mass of the planetary nursery around the star TW Hydrae. At a distance of merely 176 light-years from Earth, this is the closest star that is currently forming new planets - hence one of the most important objects for astronomers studying planet formation.

The precise new measurement shows a much larger mass for TW Hydrae's disk than in previous studies, indicating that the system could be forming planets similar to those of our own Solar System. The study is published in the January 31 issue of the journal Nature.

Where Egyptologists have their Rosetta Stone and geneticists their Drosophila fruit flies, astronomers studying planet formation have TW Hydrae: A readily accessible sample object with the potential to provide foundations for an entire area of study.

TW Hydrae is a young star with about the same mass as the Sun. It is surrounded by a protoplanetary disk: a disk of dense gas and dust in which small grains of ice and dust clump to form larger objects and, eventually, into planets. This is how our Solar System came into being more than 4 billion years ago.

What is special about the TW Hydrae disk is its proximity to Earth: at a distance of 176 light-years from Earth, this disk is two-and-a-half times closer to us than the next nearest specimens, giving astronomers an unparalleled view of this highly interesting specimen - if only figuratively, because the disk is to small to show up on an image; its presence and properties can only be deduced by comparing light received from the system at different wavelengths (that is, the object's spectrum) with the prediction of models.

In consequence, TW Hydrae has one of the most frequently observed protoplanetary disks of all, and its observations are a key to testing current models of planet formation.

That's why it was especially vexing that one of the fundamental parameters of the disk remained fairly uncertain: The total mass of the molecular hydrogen gas contained within the disk.

This mass value is crucial in determining how many and what kinds of planets can be expected to form.

Previous mass determinations were heavily dependent on model assumptions; the results had significant error bars, spanning a mass range between 0.5 and 63 Jupiter masses.

The new measurements exploit the fact that not all hydrogen molecules are created equal: Some very few of them contain a deuterium atom - where the atomic nucleus of hydrogen consists of a single proton, deuterium has an additional neutron. This slight change means that these "hydrogen deuteride" molecules consisting of one deuterium and one ordinary hydrogen atom emit significant infrared radiation related to the molecule's rotation.

The Herschel Space Telescope provides the unique combination of sensitivity at the required wavelengths and spectrum-taking ability ("spectral resolution") required for detecting the unusual molecules. The observation sets a lower limit for the disk mass at 52 Jupiter masses, with an uncertainty ten times smaller than previous result.

While TW Hydrae is estimated to be relatively old for a stellar system with disk (between 3 and 10 million years), this shows that there is still ample of matter in the disk to form a planetary system larger than our own (which arose from a much lighter disk).

On this basis, additional observations, notably with the millimeter/submillimeter array ALMA in Chile, promise much more detailed future disk models for TW Hydrae - and, consequently, much more rigorous tests of theories of planet formation.

The observations also throw an interesting light on how science is done - and how it shouldn't be done. Thomas Henning explains: "This project started in casual conversation between Ted Bergin, Ewine van Dishoek and me. We realized that Herschel was our only chance to observe hydrogen deuteride in this disk - way too good an opportunity to pass up. But we also realized we would be taking a risk. At least one model predicted that we shouldn't have seen anything! Instead, the results were much better than we had dared to hope."

TW Hydrae holds a clear lesson for the committees that allocate funding for scientific projects or, in the case of astronomy, observing time on major telescopes - and which sometimes take a rather conservative stance, practically requiring the applicant to guarantee their project will work.

In Henning's words: "If there's no chance your project can fail, you're probably not doing very interesting science. TW Hydrae is a good example of how a calculated scientific gamble can pay off."

The results have been published as E. A. Bergin et al., "An Old Disk That Can Still Form a Planetary System" in the January 31 edition of Nature. The co-authors are Edwin A. Bergin, L. Ilsedore Cleeves (both University of Michigan), Uma Gorty (SETI Institute and NASA Ames Research Center), Ke Zhang, Geoffrey A. Blake (both Caltech), Joel D. Green (University of Texas, Austin), Sean M. Andrews (Harvard-Smithsonian Center for Astrophysics [CfA]), Neal J. Evans II (University of Texas, Austin), Thomas Henning (Max Planck Institute for Astronomy), Karin Oberg (CfA), Klaus Pontoppidan (Space Telescope Science Institute), Chunhua Qi (CfA), Colette Salyk (NOAO), and Ewine F. van Dishoeck (Max Planck Institute for Extraterrestrial Physics and Leiden Observatory).

.


Related Links
Max Planck Institute for Astronomy in Heidelberg
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
The Origin And Maintenance Of A Retrograde Exoplanet
Tokyo, Japan (SPX) Jan 29, 2013
Astronomers have used the Subaru Telescope to show that the HAT-P-7 planetary system, which is about 1040 light-years from Earth in the constellation Cygnus, includes at least two giant planets and one companion star. The discovery of a previously unknown companion (HAT-P-7B) to the central star (HAT-P-7) as well as confirmation of another giant planet (HAT-P-7c) orbiting outside of the re ... read more


EXO WORLDS
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

EXO WORLDS
AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

EXO WORLDS
Sierra Nevada Corporation and Lockheed Martin Space Systems Company Partner On Dream Chaser Programs

NASA Launches Next-Gen Communications Satellite

NASA Takes Strides Forward to Launch Americans from U.S. Soil

Iran Takes First Step to Send Man to Space

EXO WORLDS
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

EXO WORLDS
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

EXO WORLDS
Site of space rocket launch to become home of S. Korea's space program

Payload preps continue for first Ariane 5 flights of 2013

NASA Wallops Rocket Mission January 29 Prepping for Future Projects

Russia's Troubled Rocket Cleared for Launch

EXO WORLDS
TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought

The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

EXO WORLDS
NTU research embraces laser and sparks cool affair

Bioinspired fibers change color when stretched

Stanford Researchers Break Million-core Supercomputer Barrier

Scientists trick iron-eating bacteria into breathing electrons instead




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement