. 24/7 Space News .
EARLY EARTH
Surviving evidence of Earth's formative years
by Staff Writers
Washington DC (SPX) May 13, 2016


This is a photograph of Baffin Island, where a research team was able find a geochemical signature of material left over from the early melting events that accompanied Earth's formation. Image courtesy of Don Francis of McGill University. For a larger version of this image please go here.

New work from a team including Carnegie's Hanika Rizo and Richard Carlson, as well as Richard Walker from the University of Maryland, has found material in rock formations that dates back to shortly after Earth formed. The discovery will help scientists understand the processes that shaped our planet's formative period and its internal dynamics over the last 4.5 billion years. It is published by Science.

Earth formed from the accretion of matter surrounding the young Sun. The heat of its formation caused extensive melting of the planet, leading Earth to separate into two layers when the denser iron metal sank inward toward the center, creating the core and leaving the silicate-rich mantle floating above.

Over the subsequent 4.5 billion years of Earth's evolution, convection in Earth's interior, like water boiling on a stove, caused deep portions of the mantle to rise upwards, melt, and then separate once again by density. The melts, since they were less dense than the unmelted rock, rose to form Earth's crust, while the denser residues of the melting sank back downward, altering the mantle's chemical composition in the process.

The mantle residues of crust formation were previously believed to have mixed back into the mantle so thoroughly that evidence of the planet's oldest geochemical events, such as core formation, was lost completely.

However, the research team - which also included Sujoy Mukhopadhyay and Vicky Manthos of University of California Davis, Don Francis of McGill University, and Matthew Jackson, a Carnegie alumnus now at University of California Santa Barbara - was able find a geochemical signature of material left over from the early melting events that accompanied Earth's formation. They found it in relatively young rocks both from Baffin Island, off the coast of northern Canada, and from the Ontong-Java Plateau in the Pacific Ocean, north of the Solomon Islands.

These rock formations are called flood basalts because they were created by massive eruptions of lava. The solidified lava itself is only between 60 and 120 million years old, depending on its location. But the team discovered that the molten material from inside the Earth that long ago erupted to create these plains of basaltic rock owes its chemical composition to events that occurred over 4.5 billion years in the past.

Here's how they figured it out:
They measured variations in these rocks of the abundance of an isotope of tungsten - the same element used to make filaments of incandescent light bulbs. Isotopes are versions of an element in which the number of neutrons in each atom differs from the number of protons. (Each element contains a unique number of protons.) These differing neutron numbers mean that each isotope has a slightly different mass.

Why tungsten? Tungsten contains one isotope of mass 182 that is created when an isotope of the element hafnium undergoes radioactive decay, meaning its elemental composition changes as it gives off radiation. The time it takes for half of any quantity of hafnium-182 to decay into tungsten-182 is 9 million years. This may sound like a very long time, but is quite rapid when it comes to planetary formation timescales. Rocky planets like Earth or Mars took about 100 million years to form.

The team determined that the basalts from Baffin Island, formed by a 60-million-year-old eruption from the mantle hot-spot currently located beneath Iceland, and the Ontong-Java Plateau, which was formed by an enormous volcanic event about 120 million years ago, contain slightly more tungsten-182 than other young volcanic rocks.

Because all the hafnium-182 decayed to tungsten-182 during the first 50 million years of Solar System history, these findings indicate that the mantle material that melted to form the flood basalt rocks that the team studied originally had more hafnium than the rest of the mantle. The likely explanation for this is that the portion of Earth's mantle from which the lava came had experienced a different history of iron separation than other portions of the mantle (since tungsten is normally removed to the core along with the iron.)

It was a surprise to the team that such material still exists in Earth's interior.

"This demonstrates that some remnants of the early Earth's interior, the composition of which was determined by the planet's formation processes, still exist today," explained lead author Rizo, now at Universite du Quebec a Montreal.

"The survival of this material would not be expected given the degree to which plate tectonics has mixed and homogenized the planet's interior over the past 4.5 billion years, so these findings are a wonderful surprise," added Carlson, Director of Carnegie's Department of Terrestrial Magnetism.

The team's discovery offers new insight into the chemistry and dynamics that shaped our planet's formative processes. Going forward, scientists will have to hunt for other areas showing outsized amounts of tungsten-182 with the hope of illuminating both the earliest portion of Earth's history as well as the place in Earth's interior where this ancient material is stored.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Institution for Science
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
New evidence connects dung beetle evolution to dinosaurs
Cleveland OH (SPX) May 09, 2016
Researchers have found an evolutionary connection between dinosaurs and dung beetles. An international team of scientists uncovered the first molecular evidence indicating that dung beetles evolved in association with dinosaurs. The findings place the origin of dung beetles (Scarabaeidae: Scarabaeinae) in the Lower Cretaceous period, with the first major diversification occurring in the middle o ... read more


EARLY EARTH
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

EARLY EARTH
Flying observatory detects atomic oxygen in Martian atmosphere

Beyond Ikea: Swedish Gadget to Harvest Water on Martian Surface

Clues about Volcanoes Under Ice on Ancient Mars

Second ExoMars mission moves to next launch opportunity in 2020

EARLY EARTH
No more space race for US, rivalry gives way to collaboration

NASA Awards Contract for Aeronautics, Exploration Modeling, Simulation

Michael Watkins Named Next JPL Director

US to move more assets into deep space over next 4 years

EARLY EARTH
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

EARLY EARTH
NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

Tim Peake goes roving

Russia delays space crew's return to Earth

EARLY EARTH
SpaceX successfully lands rockets first stage after space launch

SpaceX lands rocket's first stage after space launch

Agreement Signed for Airbus Safran Launchers

SpaceX to launch Japanese satellite early Friday

EARLY EARTH
Scientists discover potentially habitable planets

MIT compiles list of potential gases to guide search for life on exoplanets

Three potentially habitable worlds found around nearby ultracool dwarf star

Light Echoes Give Clues to Protoplanetary Disk

EARLY EARTH
Design tool enables novices to create bendable input devices for computers

Molybdenum disulfide holds promise for light absorption

Accelerating complex computer simulations: thinking beyond ones and zeros

Machine learning accelerates the discovery of new materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.