. 24/7 Space News .
SOLAR SCIENCE
Surprising Explanation for Differences in Southern and Northern Lights
by Staff Writers
Bergen, Norway (SPX) Jan 25, 2019

File image of aurora seen from the ISS. A related video and detailed illustrations for this report can be seen here

For many years, scientists assumed the aurora seen around the north pole was identical to the aurora seen around the south pole. The poles are connected by magnetic field lines, and auroral displays are caused by charged particles streaming along these field lines. Because the charged particles follow these field lines, it would make sense that the auroras would be mirror images of each other.

However, in 2009, scientists discovered aurora can look differently around the north pole and the south pole, including having different shapes and occurring at different locations - a phenomenon called asymmetry.

Now, a new study in the Journal of Geophysical Research: Space Physics, a publication of the American Geophysical Union, explains how this asymmetry comes about and causes the differences in auroral displays near Earth's poles. The new research finds the differences in aurora are likely caused by squeezing of Earth's magnetotail - a magnetic tail that extends away from our planet - by the solar wind and the Sun's magnetic field.

When the solar magnetic field arriving at Earth is pointing in an east-west direction, it interacts with the Earth's magnetic field differently in the north and in the south. This leads to asymmetric loading of pressure onto the Earth's magnetic field and introduces a tilt in the Earth's magnetic field on the nightside of the Earth. The tilt explains why aurora sometimes can have different shapes and occur in different locations in the two polar regions.

The new finding contradicts previous theories about asymmetry, which suggested it was caused by the pulling apart and reconnecting of magnetic field lines in the Earth's magnetic tail, a process called tail reconnection. The new study finds that, in fact, tail reconnection reduces this asymmetry.

"The reason this is exciting is that earlier we have thought that the asymmetry in the system enters the magnetosphere by a mechanism called tail reconnection," said Anders Ohma, a PhD candidate at the University of Bergen in Norway, and lead author of the new study. "What this paper shows is that it's possible that it is actually the opposite: This reconnection in the magnetotail is actually reducing the asymmetry."

Not only does the new research explain why the northern and southern lights appear different in the night sky, but it also helps scientists better understand interactions between the Earth and the Sun. This knowledge is important for accurately predicting the location and timing of space weather events, which can create havoc for our electricity grids, satellites and astronauts in space.

A related paper in the journal Annales Geophysicae details the asymmetry seen during a geomagnetic storm in August of 2001, and demonstrates the importance of considering geospace, or the interactions between the Sun and Earth, as an asymmetric system.

"Without including these asymmetries our understanding of the Sun-Earth system will be far from complete and models will not be able to accurately predict the location and timing of geospace phenomena," said Nikolai Ostgaard, professor and head of the Birkeland Centre for Space Science at the University of Bergen in Norway, and lead author of the study in Annales Geophysicae.

Generating Aurora
Earth's core generates a magnetic field extending into outer space around our planet, forming a magnetic shield called the magnetosphere that protects the Earth from charged particles coming off of the Sun. The Sun emits its own magnetic field, called the interplanetary magnetic field, or IMF, that is carried by the solar wind and interacts with Earth's magnetic field.

During certain conditions, on the dayside of Earth, the Sun's interplanetary magnetic field lines and the Earth's magnetic field lines can be ripped apart and cross, connecting Earth's magnetic field to the IMF. The solar wind flowing from the Sun moves these crossed field lines to the nightside of Earth and stretches it into a tail - called the magnetotail - that extends away from the Earth.

Eventually, these crossed field lines are pulled apart and the Earth field lines rejoin with Earth field lines, and the IMF field lines rejoin with IMF field lines. Once the field lines are closed, they snap back towards Earth, accelerating particles nearby and causing auroral displays in the Earth's upper atmosphere.

Because these field lines may not be the field lines originally connected to each other, scientists thought these new field lines may not be symmetrically aligned, and could be twisted and connected back to Earth in different locations in the northern and southern hemisphere. They thought it was this tail reconnection that caused the differences in aurora in the northern and southern hemispheres.

But, the new research shows this is not the case. The new study examined multiple images of asymmetric aurora in the northern and southern hemispheres at the same time and how these auroras evolved over time, so they could see the same phenomenon happening over and over. Then they related it to activity in the magnetotail.

The new study shows auroral asymmetry is reduced as tail reconnection progresses. Further, the asymmetry persists even if little to no reconnection occurs. So, the new study shows, tail reconnection is not responsible for the asymmetry.

Instead, the new research finds it is differences in pressure being exerted on the magnetotail that cause these auroral differences. The magnetotail is being constantly squeezed by the solar wind and IMF, and it is this non-uniform squeezing on it from different directions that is causing the differences in auroral displays at the two poles. The squeezing depends on the orientation of the IMF.

"This study explains both how asymmetries are created and how it is removed and it is exactly opposite of what I and many researchers have thought," said Mike Liemohn, editor-in-chief of JGR-Space Physics. "Therefore, this result is kind of a big deal."

Research Report: "Evolution of Asymmetrically Displaced Footpoints During Substorms,"


Related Links
Birkeland Centre For Space Science
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Last Breath of a Dying Star
Garching, Germany (SPX) Jan 23, 2019
The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time - around 10,000 years, a blink of an eye in astronomical terms. ESO's Very Large Telescope captured this shell of glowing ionised gas - the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. An evanescent shell of glowing gas spreading into ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

Blue Origin to make 10th flight test of space tourist rocket

China is growing crops on the far side of the moon

STELLAR CHEMISTRY
Jeff Bezos's Blue Origin rocket makes 10th flight test

Countdown for launch of DRDO satellite starts

Japan launches Epsilon-4 Rocket with 7 satellites

United Launch Alliance Successfully Launches NROL-71 in Support of National Security

STELLAR CHEMISTRY
NASA's Opportunity Rover Logs 15 Years on Mars

Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

Team selected by Canadian Space Agency to study Mars minerals

STELLAR CHEMISTRY
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

STELLAR CHEMISTRY
mu Space unveils plan to bid for space exploration projects

Airbus wins DARPA contract to develop smallsat bus for Blackjack program

Thales Alenia Space and Maxar Consortium Achieve Major Milestone in Design Phase of Telesat's LEO Satellite Constellation

OneWeb's first satellites arrive in Kourou, French Guiana in preparation for the first OneWeb launch on February 19, 2019

STELLAR CHEMISTRY
2D magnetism reaches a new milestone

New 3D nanoprinting strategy opens door to revolution in medicine, robotics

Winning ideas for 3D printing on the Moon

ESA says there are 'big beasts' among 20,000 pieces of space junk

STELLAR CHEMISTRY
Where Is Earth's Submoon?

Planetary collision that formed the Moon made life possible on Earth

Astronomers find star material could be building block of life

Double star system flips planet-forming disk into pole position

STELLAR CHEMISTRY
New Horizons' Newest and Best-Yet View of Ultima Thule

Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.