. | . |
Supermassive Black Holes Can Overpower Even the Smallest Galaxies by Staff Writers Baltimore MD (SPX) Jan 10, 2018
Why do galaxies stop making new stars? Today, astronomers from the Sloan Digital Sky Survey report a surprising new answer to that important question: feedback from supermassive black holes blocks star formation, even in some of the smallest galaxies. The results, being presented at the American Astronomical Society (AAS) meeting in National Harbor, Maryland on Thursday and soon to be published in the Monthly Notices of the Royal Astronomical Society, represent a major step forward in our understanding of how dwarf galaxies - some of the smallest in our universe - are prevented from forming stars. "Dwarf galaxies outnumber galaxies like the Milky Way fifty to one," says Samantha Penny of the University of Portsmouth's Institute of Cosmology and Gravitation and lead author of the study. "So if we want to tell the full story of galaxies, we need to understand how dwarf galaxies work." In any galaxy, stars are born when clouds of gas collapse under the force of their own gravity. But stars don't keep on being born forever - at some point, star formation in a galaxy shuts off. The reason for this can be different in different galaxies. Sometimes, a galaxy simply runs out of gas, exhausting its star-making fuel. Sometimes, its gas heats up so much that the excited gas defies collapse into new stars. Sometimes, its gas is pulled out of the galaxy by a gravitational interaction with a nearby galaxy. And sometimes, the galaxy's own central black hole is the culprit. Most galaxies have a supermassive black hole at their centers, and understanding the connections between it and the rest of the galaxy has been an important area of research for astronomers for years. Eighteen months ago, SDSS astronomers discovered a new way in which galactic black holes can shut off star formation, which they named a "red geyser." That discovery, as well as the results being reported today, were made possible by the SDSS's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Whereas most prior surveys had looked at each galaxy as a single entity, MaNGA uses more than 1,000 optical fibers to make detailed maps of seventeen galaxies at a time, seeing each galaxy in detail all the way from its center to its outskirts. This observing strategy enables discoveries which link the central black hole to the rest of the galaxy - like red geysers. A red geyser forms as a result of gas falling into a galaxy's central black hole. As the gas falls in, it heats up to millions of degrees and glows brightly. But this gas infall also drives powerful winds, blowing out across the rest of the galaxy at thousands of miles per second. Kevin Bundy, the Principal Investigator of MaNGA from the University of California Santa Cruz, explains the origin of the term - "we called these features 'red geysers' because the sporadic wind outbursts reminded us of a geyser, and because the end of star formation has left the galaxy with only red stars." "When we first found red geysers, we thought they would only be found in larger galaxies," says Penny. "We had seen active black holes in dwarf galaxies before, but we've never been able to see them in action. With MaNGA, we can now see their effects across a whole galaxy. And we can do it for many, many galaxies at a time." Over its nearly three years in operation, MaNGA has seen galaxies of all kinds, from dwarf to giant, including more than 300 dwarf galaxies. To their great surprise, Penny and her team found red geysers in about ten percent of the dwarf galaxies they saw in the MaNGA survey. As Karen Masters, a member of the team from the University of Portsmouth and Haverford College explains, "This discovery shows that even isolated dwarf galaxies can stop forming stars if they host an active supermassive black hole. That's not what's written in our textbooks on galaxy evolution. It was a real surprise to see it even once, much less in one out of every ten galaxies we looked at." This discovery would not have been possible without the data from the MaNGA survey - both in its incredible detail and in its ability to see so many galaxies in such a short time. MaNGA has already observed more dwarf galaxies than any previous survey with this level of detail, and it will continue over the next two years. The survey has the potential to reveal many more surprises about our universe.
Santa Cruz CA (SPX) Jan 02, 2018 Young galaxies blaze with bright new stars forming at a rapid rate, but star formation eventually shuts down as a galaxy evolves. A new study, published January 1, 2018, in Nature, shows that the mass of the black hole in the center of the galaxy determines how soon this "quenching" of star formation occurs. Every massive galaxy has a central supermassive black hole, more than a million ti ... read more Related Links Sloan Digital Sky Survey Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |