. 24/7 Space News .
STELLAR CHEMISTRY
Superlens squeezes light into nanospace
by Staff Writers
Moscow, Russia (SPX) Jun 17, 2020

Plasmon nanojet-based superlens. When a laser pulse of wavelength A shines on the diffraction grating in the gold film, this gives rise to another type of electromagnetic excitations, known as surface plasmon polaritons. They propagate along the gold film and undergo 60% compression to a wavelength of 0.6A when passing the square nanoparticle. This so-called plasmon nanojet effect, observed in the study for the first time, offers intriguing prospects for localizing light to the point where it becomes feasible to use it in fast and compact optical computers.

Russian and Danish researchers have made a first-ever experimental observation of a plasmon nanojet. This physical phenomenon enables nanoscale focusing of light and, theoretically, allows engineers to bypass one of the fundamental limitations of the ordinary converging lens. Tight compression of light waves is necessary to use them as signal carriers in compact devices that would work much faster than today's electronics. The study comes out in the June 15 issue of Optics Letters.

Before laser pointers became available, the amorous heroes of romance novels had to make do with small rocks they would throw into a beloved's window to indicate their presence. Among the numerous drawbacks of rocks as signal carriers is their mass, which means sending a message requires an effort and time. While the electron does not weigh as much as a rock, it still cannot be put in motion instantaneously. If we could replace the electrons in microcircuits with photons - the massless particles of light - the resulting devices would operate much faster.

What prevents engineers from abandoning electronic chips in favor of their photonic analogues is the need for miniaturization. With today's technology, such optical devices would have an enormous size. To make them smaller, engineers require a way to control photons on such a small scale that the light wave itself has to be localized, squeezed into a minimum space. Ideally, the light needs to be focused into a spot smaller than 50% of the original wavelength. While this feat is impossible in the classical optics due to what's known as the diffraction limit, modern research has already found several ways around it. And the newly observed plasmon nanojet is likely to become one of them.

A team of Russian and Danish physicists has created a focusing component, or nanolens, capable of converting light into electromagnetic waves of a special kind, compressing it to 60% of the initial radiation wavelength. This new contraption is made up of a square piece of dielectric material 5 by 5 micrometers in size and 0.25 micrometers thick. Shown in figure 1, the square particle lies on a thin 0.1-micrometer gold film, next to an etched grating that diffracts light.

Illuminating the grating in the gold film with a laser generates excitations known as surface plasmon polaritons, which travel along the metal's surface. These SPPs are essentially two kinds of waves coupled to each other and propagating together. First, there's the collective oscillation of electrons in gold - the plasmon part - and then there's also a surface light wave called a polariton. The point of converting light to SPPs is that there are ways to focus them to a greater extent than the initial laser pulse.

"One of the mechanisms that enable subwavelength focusing relies on the plasmon nanojet, a phenomenon we have observed in an experiment for the first time," said the paper's lead author, Professor Igor Minin of Tomsk Polytechnic University.

The scientific explanation of why waves undergo compression in the superlens is as follows. "Using computer simulations, we figured out the appropriate dimensions of the dielectric particle and the diffraction grid in the gold film. When these parameters are right, SPPs have different phase velocities at different points in the particle. This causes the wavefront to bend, creating a vortex in the particle and therefore a region dense with SPPs behind it, which we call a plasmon nanojet," said study co-author Dmitry Ponomarev, a leading researcher at the MIPT Laboratory of 2D Materials and Nanodevices and the deputy director of Mokerov Institute of Ultra High Frequency Semiconductor Electronics of the Russian Academy of Sciences.

The study has demonstrated a new and efficient mechanism for strongly localizing radiation and manipulating it on the nanoscale, which is a prerequisite for densely packing optical components in photonic and plasmonic devices that would operate much faster than conventional electronics.

The head of the MIPT Center for Photonics and 2D Materials, Valentyn Volkov, who co-authored the study, added: "The experimental observation of plasmon nanojets has been made possible by a concerted effort on the part of our center's researchers and the colleagues in Moscow, Tomsk, and Copenhagen. This collaboration is not over, and we are planning to show other exciting effects that have to do with the formation, propagation, and application of plasmon nanojets."

Research paper


Related Links
Moscow Institute Of Physics And Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
'Whispering gallery' effect controls electron beams with light
Gottingen, Germany (SPX) Jun 08, 2020
When you speak softly in one of the galleries of St Paul's cathedral, the sound runs so easily around the dome that visitors anywhere on its circumference can hear it. This striking phenomenon has been termed the 'whispering gallery' effect, and variants of it appear in many scenarios where a wave can travel nearly perfectly around a structure. Researchers from the University of Gottingen have now harnessed the effect to control the beam of an electron microscope by light. The results were published in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Airbnb sees 'bounce' in travel, aims to promote local tourism

ARISS established dedicated US Organization to support amateur ISS communications

From space, Russian cosmonauts fight chess grandmaster to a draw

CES global gadget fest on track despite pandemic

STELLAR CHEMISTRY
New Zealand rocket launch postponed due to wind gusts

Kids are building rockets from their bedrooms

Winds scrub Rocket Lab launch from New Zealand

Agency seeks hypersonic missile defense system proposals

STELLAR CHEMISTRY
First Arab mission to Mars designed to inspire youth

Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

Scientist captures new images of Martian moon Phobos to help determine its origins

STELLAR CHEMISTRY
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

STELLAR CHEMISTRY
York Space Systems and LatConnect 60 to deploy a small satellite constellation

Broadband players lobby for uninterrupted foreign funds in India's satellite missions

Momentus and OrbAstro announce service agreement for 3U in-orbit demonstration

Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

STELLAR CHEMISTRY
A breakthrough in developing multi-watt terahertz lasers

Freshly printed magnets using Metal 3D laser printing

Could we run out of sand? Scientists adjust how grains are measured

After a century of searching, scientists find new liquid phase

STELLAR CHEMISTRY
Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

Presence of airborne dust could signify increased habitability of distant planets

Mysterious interstellar visitor was probably a 'dark hydrogen iceberg,' not aliens

STELLAR CHEMISTRY
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.