. 24/7 Space News .
TIME AND SPACE
Super-resolved imaging of a single cold atom on a nanosecond timescale
by Staff Writers
Hefei, China (SPX) Jan 07, 2022

In cold atomic systems, fast and high-resolution microscopy of individual atoms is crucial, since it can provide direct information on the dynamics and correlations of the system. Here, we demonstrate nanosecond-scale two-dimensional stroboscopic pictures of a single trapped ion beyond the optical diffraction limit, by combining the main idea of ground-state depletion microscopy with quantum-state transition control in cold atoms.

The team of academician GUO Guangcan of University of Science and Technology of China (USTC) of the Chinese Academy of Sciences has made important progress in the research of cold atom super-resolution imaging. The team achieved super-resolution imaging of a single ion in an ion trap system. The results were published in Physical Review Letters.

The cold atom system is an ideal experimental platform for studying quantum physics, as well as an important physical system for experimental research on quantum simulation, quantum computing, and quantum precision measurement. One of the core experimental techniques in the cold atom system is high-resolution single-particle imaging. In the past ten years, the microscopic imaging technology of the cold atom system has developed rapidly.

However, the newly developed technologies are still limited by the fundamental optical diffraction limit, and the resolution can only reach the order of optical wavelength. It is difficult to study quantum phenomena related to the details of the wave function. To study such problems requires optical super-resolution imaging.

Optical super-resolution imaging has developed into a mature tool in the fields of chemistry and biology. However, due to the complexity of cold atom experiments, it is extremely challenging to apply super-resolution imaging technology to cold atom systems. Prior to this, the world has not yet made progress on the direct super-resolution imaging of single atoms (ions).

In this study, the researchers adopted the main idea of the Stimulated Emission Depletion (STED) microscopy in the classical super-resolution imaging field, and combining it with the atomic quantum state initialization and reading technology of the cold atom system. They realized super-resolved imaging of a single cold atom (ion) directly for the first time.

Experimental results showed that the spatial resolution of the imaging method can exceed the diffraction limit by more than one order, and the imaging resolution of 175 nm can be achieved by using an objective lens with a numerical aperture of only 0.1.

To further demonstrate the time resolution advantage of this method, the researchers achieved both a time resolution of 50 ns and a single ion positioning accuracy of 10 nm, and used this method to clearly capture the rapid harmonic oscillations of the ion in the trap. Theoretically, by increasing the numerical aperture of the imaging objective and the center extinction ratio of the depleted light (the doughnut spot), the spatial resolution can be further improved to below 10 nm.

This experimental technique can be extended to the multi-body and correlation measurement of cold atom systems, and has good compatibility with other cold atom systems. It can be applied to optical lattices, neutral atom optical tweezers, and cold atom-ion hybrid systems.

Research Report: "Super-resolved Imaging of a Single Cold Atom on a Nanosecond Timescale"


Related Links
University of Science and Technology of China
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Physicists watch as ultracold atoms form a crystal of quantum tornadoes
Boston MA (SPX) Jan 06, 2022
The world we experience is governed by classical physics. How we move, where we are, and how fast we're going are all determined by the classical assumption that we can only exist in one place at any one moment in time. But in the quantum world, the behavior of individual atoms is governed by the eerie principle that a particle's location is a probability. An atom, for instance, has a certain chance of being in one location and another chance of being at another location, at the same exact time. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

Nibbling cats and Covid masks: First look at CES tech show

Space Station research during 2021

TIME AND SPACE
Arianespace consolidates leadership in commercial market with 15 Ariane, Soyuz and Vega launches in 2021

Prestwick Spaceport Files Planning Application Notice

Rogozin says Baikonur security strengthened amid Kazakhstan protests

NASA releases autonomous flight termination unit software to industry

TIME AND SPACE
Sol 3350-3352: A Rock Under the Wheel

Assessing Perseverance's Seventh Sample Collection

Perseverance set to exit Seitah area

Sol 3349: Ridges, Big and Small

TIME AND SPACE
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

TIME AND SPACE
Advertising plays key role in satellite TV success, study shows

Euroconsult predicts highest government space budgets in decades despite Covid

Loft Orbital extends production agreement with LeoStella

Voyager Space Completes Acquisition of Space Micro

TIME AND SPACE
Take-Two to buy 'Farmville' creator Zynga for $12.7 bn

Metaverse gets touch of reality at CES

Ammonia and paper: Sustainability ideas at CES tech show

Debris from failed Russian rocket falls into sea near French Polynesia

TIME AND SPACE
Eccentric exoplanet discovered

Arianespace to launch PLATiNO 1 and 2 on Vega and Vega C

New year's mission to start new phase of exoplanet research

Life could be thriving in the clouds of Venus

TIME AND SPACE
Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.