![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Buffalo NY (SPX) Oct 30, 2018
The Arctic is warming faster than the rest of the globe, and as it does, it's predicted to get wetter. But why? What mechanisms might drive these changes? A new study looks to history for answers, examining what happened in the region during a period of warming some 8,000 years ago. The research finds evidence that in this ancient time, western Greenland became more humid, a trend that's often linked to increased precipitation. The study further shows that two different climactic processes may have contributed to this elevated humidity. The processes are: + As the Arctic heats up, sea ice melts, exposing regional waters to sun, air and increased evaporation. + As the planet warms, humidity increases more in regions closer to the equator. This creates an imbalance in global humidity, and eventually, moist air from lower latitudes is drawn into the drier Arctic. "We used geologic evidence to determine that both of these processes likely contributed to an increase in humidity in western Greenland when the region warmed rapidly 8,000 years ago," says lead researcher Elizabeth Thomas, PhD, assistant professor of geology in the University at Buffalo College of Arts and Sciences. "As such, both processes could be at play again today, contributing to possible future increases in Arctic humidity, and ultimately, precipitation." "We don't have long or detailed written records of Arctic precipitation, so we don't fully understand how precipitation might increase in response to warming," she says. It's an important area of study, she adds, because, "precipitation in the Arctic has complex interactions with climate, and it also impacts plant communities and affects how fast glaciers may shrink." The study was published this month in Geophysical Research Letters by a team of scientists from UB, the University of Massachusetts and Northern Arizona University. The research was funded by the National Science Foundation.
Clues in lakebed mud As Thomas explains, when it comes to leaf waxes, weather influences the chemical content of these waxes in ways that scientists can trace. Specifically, leaf waxes contain small amounts of a rare form of hydrogen called deuterium, and the concentration of deuterium can go up or down in response to factors such as humidity and precipitation patterns. (One example: In Arctic leaf waxes, deuterium concentrations fluctuate depending on whether precipitation originated locally or from clouds that traveled long distances from low latitudes to arrive in the region). Chemicals called branched glycerol dialkyl glycerol tetraethers (GDGTs), produced by bacteria, also hold clues about past climate. The composition of these compounds varies depending on the temperature of the surrounding environment at the time they were produced. As a result, scientists can use branched GDGTs to reconstruct prehistoric temperature trends, Thomas says. These chemical indicators enabled Thomas' team to investigate ancient humidity and precipitation trends in western Greenland as the region warmed some 8,000 years ago. The new research was based on leaf waxes and branched GDGTs found in a sediment sample that the team extracted from the bottom of Sikuiui Lake in western Greenland. "These chemical indicators are fairly new tools, and they enable us to research ancient climate in ways that were not possible before," Thomas says. "We can use these tools to investigate how humidity fluctuated in a region thousands of years ago, or whether storms in an area originated locally or far away. This is important because understanding what happened in ancient times can provide us with insight into what might happen today as the climate changes."
![]() ![]() Changes in snow coverage threatens biodiversity of Arctic nature Helsinki, Finland (SPX) Oct 24, 2018 Many of the plants inhabiting northern mountains depend on the snow cover lingering until late spring or summer. Snow provides shelter for plants from winter-time extreme events but at the same time it shortens the length of growing season, which prevents the establishment of more southern plants. This is why the reduced snow cover may be an even larger threat to the Arctic plants than rising temperatures. In a study published in the renowned scientific journal Nature Climate Change, researchers f ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |