. 24/7 Space News .
STELLAR CHEMISTRY
String of stars in Milky Way are related
by Amanda Morris
Chicago IL (SPX) Jan 19, 2021

An artistic rendering of generic stellar streams in the Milky Way. Credit: NASA/JPL-Caltech/R. Hurt, SSC & Caltech

The Milky Way houses 8,292 recently discovered stellar streams - all named Theia. But Theia 456 is special.

A stellar stream is a rare linear pattern - rather than a cluster - of stars. After combining multiple datasets captured by the Gaia space telescope, a team of astrophysicists found that all of Theia 456's 468 stars were born at the same time and are traveling in the same direction across the sky.

"Most stellar clusters are formed together," said Jeff Andrews, a Northwestern University astrophysicist and member of the team. "What's exciting about Theia 456 is that it's not a small clump of stars together. It's long and stretched out. There are relatively few streams that are nearby, young and so widely dispersed."

Andrews presented this research during a virtual press briefing at the 237th meeting of the American Astronomical Society. "Theia 456: A New Stellar Association in the Galactic Disk" took place Jan. 15 as a part of a session on "The Modern Milky Way."

Andrews is a postdoctoral fellow at Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). He conducted this work with astrophysicists Marcel Agueros and Jason Curtis of Columbia University, Julio Chaname of Pontifica Universidad Catolica, Simon Schuler of University of Tampa and Kevin Covey and Marina Kounkel of Western Washington University.

While researchers have long known that stars form in groups, most known clusters are spherical in shape. Only recently have astrophysicists started to find new patterns in the sky. They believe long strings of stars were once tight clusters, gradually ripped apart and stretched by tidal forces.

"As we've started to become more advanced in our instrumentation, our technology and our ability to mine data, we've found that stars exist in more structures than clumps," Andrews said. "They often form these streams across the sky. Although we've known about these for decades, we're starting to find hidden ones."

Stretching more than 500 light-years, Theia 456 is one of those hidden streams. Because it dwells within the Milky Way's galactic plane, it's easily lost within the galaxy's backdrop of 400 billion stars. Most stellar streams are found elsewhere in the universe - by telescopes pointed away from the Milky Way.

"We tend to focus our telescopes in other directions because it's easier to find things," Andrews said. "Now we're starting to find these streams in the galaxy itself. It's like finding a needle in a haystack. Or, in this case, finding a ripple in an ocean."

Identifying and examining these structures is a data science challenge. Artificial intelligence algorithms combed huge datasets of stellar data in order to find these structures. Then Andrews developed algorithms to cross-reference those data with pre-existing catalogs of documented stars' iron abundances.

Andrews and his team found that the 468 stars within Theia 456 had similar iron abundances, which means that - 100 million years ago - the stars likely formed together. Adding further evidence to this finding, the researchers examined a light curves dataset, which captures how stars' brightness changes over time.

"This can be used to measure how fast the stars are spinning," Agueros said. "Stars with the same age should show a distinct pattern in their spin rates."

With the help of data from NASA's Transiting Exoplanet Survey Satellite and from the Zwicky Transient Facility - both of which produced light curves for stars in Theia 456 - Andrews and his colleagues were able to determine that the stars in the stream do share a common age.

The team also found that the stars are moving together in the same direction.

"If you know how the stars are moving, then you can backtrack to find where the stars came from," Andrews said. "As we rolled the clock backwards, the stars became closer and closer together. So, we think all these stars were born together and have a common origin."

Andrews said combining datasets and data mining is essential to understanding the universe around us.

"You can only get so far with one dataset," he said. "When you combine datasets, you get a much richer sense of what's out there in the sky."


Related Links
Northwestern University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
The Milky Way does the Wave
Washington DC (SPX) Jan 19, 2021
In results announced this week at the 237th Meeting of the American Astronomical Society, scientists from the Sloan Digital Sky survey present the most detailed look yet at the warp of our own Galaxy. "Our usual picture of a spiral galaxy is as a flat disk, thinner than a pancake, peacefully rotating around its center," said Xinlun Cheng of the University of Virginia, the lead author of the study. "But the reality is more complicated." Astronomers have known for decades that many spiral gala ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Tourism on track in the world's largest cave

Glenn's Power Systems Facility has supported Station research for decades

Muscles, metals, bubbles and rotifers - a month of European science in space

Asteroids vs. microbes

STELLAR CHEMISTRY
SpaceX CRS-21 safely splashes down off the coast of Florida for first time

SpaceX launches first Starlink satellite mission of 2021

NASA's moon rocket roars to life during shortened test-firing

Florida's Space Coast the Number 1 Launch Site in the World in 2020

STELLAR CHEMISTRY
Mystery of Martian glaciers revealed

With $3M NASA Grant, UArizona scientists will test Mars exploration drones in Iceland

Analyzing different solid states of water on other planets and moons

InSight 'Mole' payload ends operations on Mars

STELLAR CHEMISTRY
China's space station core module, cargo craft pass factory review

Key modules for China's next space station ready for launch

Major space station components cleared for operations

Chinese space enterprise gears up for record-breaking 40-plus launches in 2021

STELLAR CHEMISTRY
China launches new mobile telecommunication satellite

OneWeb secures investment from Softbank and Hughes Network Systems

Astronauts to boost European connectivity

Statement on Satellite Constellations by German Astronomical Society

STELLAR CHEMISTRY
Keep this surface dirty

Astroscale's ELSA-d debris buster ready for a March launch

DARPA opens door to producing "unimaginable" designs for DoD

Kaman KD-5600 Family of Digital Differential Measuring Systems Ideal for Wide Range of Applications, Industries

STELLAR CHEMISTRY
A 'super-puff' planet like no other

Simulating evolution to understand a hidden switch

Astronomers finally measure polarized light from exoplanet

A rocky planet around one of our galaxy's oldest stars

STELLAR CHEMISTRY
The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.