Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Stellar partnership doomed to end in catastrophe
by Staff Writers
Munich, Germany (SPX) Feb 11, 2015


This artist's impression shows the central part of the planetary nebula Henize 2-428. The core of this unique object consists of two white dwarf stars, each with a mass a little less than that of the Sun. They are expected to slowly draw closer to each other and merge in around 700 million years. This event will create a dazzling supernova of Type Ia and destroy both stars. Image courtesy ESO/L. Calcada.

A team of astronomers, led by Miguel Santander-Garcia, have discovered a close pair of white dwarf stars - tiny, extremely dense stellar remnants - that have a total mass of about 1.8 times that of the Sun. This is the most massive such pair yet found [1] and when these two stars merge in the future they will create a runaway thermonuclear explosion leading to a Type Ia supernova [2].

The team who found this massive pair actually set out to try to solve a different problem. They wanted to find out how some stars produce such strangely shaped and asymmetric nebulae late in their lives. One of the objects they studied was the unusual planetary nebula [3] known as Henize 2-428.

"When we looked at this object's central star with ESO's Very Large Telescope, we found not just one but a pair of stars at the heart of this strangely lopsided glowing cloud," says coauthor Henri Boffin from ESO.

This supports the theory that double central stars may explain the odd shapes of some of these nebulae, but an even more interesting result was to come.

"Further observations made with telescopes in the Canary Islands allowed us to determine the orbit of the two stars and deduce both the masses of the two stars and their separation. This was when the biggest surprise was revealed," reports Romano Corradi, another of the study's authors and researcher at the Instituto de Astrofisica de Canarias.

They found that each of the stars has a mass slightly less than that of the Sun and that they orbit each other every four hours. They are sufficiently close to one another that, according to the Einstein's theory of general relativity, they will grow closer and closer, spiralling in due to the emission of gravitational waves, before eventually merging into a single star within the next 700 million years.

The resulting star will be so massive that nothing can then prevent it from collapsing in on itself and subsequently exploding as a supernova. "Until now, the formation of supernovae Type Ia by the merging of two white dwarfs was purely theoretical," explains David Jones, coauthor of the article and ESO Fellow at the time the data were obtained. "Thepair of stars in Henize 2-428 is the real thing!"

"It's an extremely enigmatic system," concludes Santander-Garcia. "It will have important repercussions for the study of supernovae Type Ia, which are widely used to measure astronomical distances and were key to the discovery that the expansion of the Universe is accelerating due to dark energy".

[1] The Chandrasekhar limit is the greatest mass that a white dwarf star can have and support itself against gravitational collapse. It has a value of about 1.4 times the mass of the Sun.

[2] Type Ia supernovae occur when a white dwarf star acquires extra mass - either by accretion from a stellar companion or by merging with another white dwarf. Once the mass exceeds the Chandrasekhar limit the star loses its ability to support itself and starts to contract. This increases the temperature and a runaway nuclear reaction occurs and blows the star to pieces.

[3] Planetary nebulae have nothing to do with planets. The name arose in the eighteenth century as some of these objects resembled the discs of the distant planets when seen through small telescopes.

This research was presented in a paper entitled "The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428" by M. Santander-Garcia et al., to appear online in the journal Nature on 9 February 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESO
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
The earliest stages of star formation in the Ophiuchus molecular cloud
Beijing (SPX) Feb 09, 2015
Molecular cores are dense condensations within molecular clouds, in which stars are born. Guoyin Zhang et al. obtained 350 um dust continuum data using the SHARC-II camera at the Caltech Submillimeter Observatory (CSO) telescope. A 350 um map covering 0.25 deg2 of the Ophiuchus molecular cloud was created by mosaicing 56 separate scans. 75 cores have been identified on this high angular re ... read more


STELLAR CHEMISTRY
NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

Service Module of Chinese Probe Enters Lunar Orbit

STELLAR CHEMISTRY
NASA Spacecraft Completes 40,000 Mars Orbits

NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Orbiter Spies Curiosity Rover at Work

Meteorite may represent 'bulk background' of Mars' battered crust

STELLAR CHEMISTRY
Auction house to sell vintage NASA photographs

SNC Completes Dream Chaser Study with German Aerospace Industry Partners

The Space Diet: Authentic Astronaut Food Goes on Sale in Moscow

Heady days for tech sector 15 years after bubble burst

STELLAR CHEMISTRY
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

STELLAR CHEMISTRY
The Strange Way Fluids Slosh on the International Space Station

NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

STELLAR CHEMISTRY
SpaceX to try rocket recycle launch on Tuesday

SpaceX calls off launch of space-weather satellite

Iran launches fourth satellite into orbit

Soyuz Installed at Baikonur, Expected to Launch Wednesday

STELLAR CHEMISTRY
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

STELLAR CHEMISTRY
SSC expands at the Inuvik Satellite Station Facility

Spacecraft Power Systems

Penta-graphene, a new structural variant of carbon, discovered

New method allows for greater variation in band gap tunability




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.