. | . |
Splitting crystals for 2-D metallic conductivity by Staff Writers Sendai, Japan (SPX) Mar 06, 2018
Sheets of electrons that are highly mobile in only two dimensions, known as 2D electron gas, have unique properties that can be leveraged for faster and novel electronic devices. Researchers have been exploring 2D electron gas, which was only discovered in 2004, to see how it can be used in superconductors, actuators, and electronic memory devices, among others. Researchers at Japan's Tohoku University, with an international team of colleagues, recently identified the atomic structure of a group of perovskite-related materials showing interesting 2D conductive properties. The materials are made of strontium, niobium and oxygen atoms, with a layered structure derived from perovskite. These strontium niobate compounds show promise for developing advanced electronics because of their 'quasi-one-dimensional' metallic conductivity. Yuichi Ikuhara of Tohoku University's Advanced Institute for Materials Research with Johannes Georg Bednorz of Zurich Research Laboratory and colleagues used atom-resolved scanning transmission electron microscopy combined with theoretical calculations to learn how adding oxygen atoms to strontium niobates affects their conductivity. Four different materials formed depending on the concentration of oxygen atoms. The researchers found that three of the materials were conductors of electricity while the fourth was an insulator. At the atomic scale, they discovered the materials were formed of alternating chain-like and zigzag slabs. Depending on the concentration of oxygen atoms, the chain-like slabs were two, three, or four layers thick, sometimes varying within the same material. The zigzag slabs were insulating layers in all the materials, while the chain-like slabs were conducting layers in three of the four materials. The team determined that local electrical conductivity within the material directly depended on the shapes of the niobate octahedra in the layers. When positive ions of niobium were displaced toward the centers of the niobate octahedra, a local conducting nature was induced. 2D conducting layers are commonly formed by creating an interface between two insulators. It should now be possible to achieve the same goal by segmenting 3D conducting materials into stacks of 2D conducting layers separated by insulating layers, the researchers say in their study published in the journal ACS Nano. This could lead to applications in the development of 2D electrical conducting materials and devices.
Atomic structure of ultrasound material not what anyone expected Raleigh, NC (SPX) Feb 26, 2018 Lead magnesium niobate (PMN) is a prototypical "relaxor" material, used in a wide variety of applications, from ultrasound to sonar. Researchers have now used state-of-the-art microscopy techniques to see exactly how atoms are arranged in PMN - and it's not what anyone expected. "This work gives us information we can use to better understand how and why PMN behaves the way it does - and possibly other relaxor materials as well," says James LeBeau, an associate professor of materials science and en ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |