24/7 Space News
SPACE MEDICINE
Space travel alters gene expression in white blood cells, weakening our immune system
illustration only
ADVERTISEMENT
     
Space travel alters gene expression in white blood cells, weakening our immune system
by Staff Writers
Ottawa, Canada (SPX) Jun 23, 2023

Evidence is mounting that astronauts are more susceptible to infections while in space. For example, astronauts on board the International Space Station (ISS) commonly suffer from skin rashes, as well as respiratory and non-respiratory diseases. Astronauts are also known to shed more live virus particles, for example Epstein-Barr virus, varicella-zoster responsible for shingles, herpes-simplex-1 responsible for sores, and cytomegalovirus. These observations suggest that our immune system might be weakened by space travel. But what could cause such an immune deficit?

"Here we show that the expression of many genes related to immune functions rapidly decreases when astronauts reach space, while the opposite happens when they return to Earth after six months aboard the ISS," said Dr Odette Laneuville, an associate professor at the Department of Biology of the University of Ottawa, leading author of a new study in Frontiers in Immunology. The research was funded by the Canadian Space Agency.

The researchers studied gene expression in leukocytes (white blood cells) in a cohort of 14 astronauts, including three women and 11 men, who resided on board the ISS for between 4.5 and 6.5 months between 2015 and 2019. Leukocytes were isolated from 4 milliliters blood drawn from each astronaut at 10 time points: once pre-flight, four times in flight, and five times back on Earth.

There and back again
15,410 genes were found to be differentially expressed in leukocytes. Among these genes, the researchers identified two clusters, with 247 and 29 genes respectively, which changed their expression in tandem along the studied timeline.

Genes in the first cluster were dialed down when reaching space and back up when returning to Earth, while genes in the second followed the opposite pattern. Both clusters mostly consisted of genes that code for proteins, but with a difference: their predominant function was related to immunity for the genes in the first cluster, and to cellular structures and functions for the second.

These results suggest that when someone travels to space, these changes in gene expression cause a rapid decrease in the strength of their immune system.

"A weaker immunity increases the risk of infectious diseases, limiting astronauts' ability to perform their demanding missions in space. If an infection or an immune-related condition was to evolve to a severe state requiring medical care, astronauts while in space would have limited access to care, medication, or evacuation" said Dr Guy Trudel, a rehabilitation physician and researcher at The Ottawa Hospital and professor at the Department of Cellular and Molecular Medicine of the University of Ottawa.

Return to usual levels back on Earth
But there is a silver lining to this cloud: the data showed that most genes in either cluster returned to their pre-flight level of expression within one year after return on Earth, and typically much sooner - on average, after a few weeks. These results suggest that returning astronauts run an elevated risk of infection for at least one month after landing back on Earth.

In contrast, the authors don't yet know how long it takes before immune resistance is fully back to its pre-flight strength: the length of this period is likely to depend on age, sex, genetic differences, and childhood exposure to pathogens.

The authors hypothesized that the change in gene expression of leukocytes under microgravity is triggered by 'fluid shift', where blood plasma is redistributed from the lower to the upper part of the body, including the lymphatic system. This causes a reduction in plasma volume by between 10% and 15% within the first few days in space. Fluid shift is known to be accompanied by large-scale physiological adaptations, apparently including altered gene expression.

Prophylaxis against immune deficits in space
"The next question is how to apply our findings to guide the design of countermeasures that will prevent immune suppression while in space in particular for long duration flight," said Laneuville.

"The health of astronauts while in space, especially during long missions, would benefit from detecting both immune dysfunction and sub-clinical inflammation. Early detection provides opportunities for intervention, with the aim to prevent a progression towards severe symptoms."

Research Report:The transcriptome response of astronaut leukocytes to long missions aboard the International Space Station reveals immune modulation

Related Links
uOttawa
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Long missions, frequent travel take a toll on astronauts' brains, study shows
Gainesville FL (SPX) Jun 09, 2023
As we enter a new era in space travel, a study looking at how the human brain reacts to traveling outside Earth's gravity suggests frequent flyers should wait three years after longer missions to allow the physiological changes in their brains to reset. Researchers studied brain scans of 30 astronauts from before and after space travel. Their findings, reported in Scientific Reports, reveal that the brain's ventricles expand significantly in those who completed longer missions of at least six mont ... read more

ADVERTISEMENT
ADVERTISEMENT
SPACE MEDICINE
Virgin Galactic's use of the 'Overview Effect' to promote space tourism is a terrible irony

Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

SPACE MEDICINE
Leidos' MACH-TB program successfully completes 1st test launch

Purdue-launched solid rocket motor-maker Adranos flies off with Anduril

Virginia Tech leads multi-institution research on polymeric solid fuel combustion

Ariane 6 progress toward inaugural flight: ArianeGroup, Les Mureaux, France

SPACE MEDICINE
Zhurong rover detects extremely weak magnetic fields on surface of Mars' Utopia Basin

Back on Track: Sols 3871-3872

Advanced space technology enabling 2024 ESCAPADE mission to Mars

Welcome to Kalavryta: Sols 3866-3867

SPACE MEDICINE
Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

SPACE MEDICINE
AST SpaceMobile and Maritime Launch Services Boost Capital with Stock Offerings

Apex raises $16M in Series A funding

AST SpaceMobile confirms 4G capabilities to everyday smartphones directly from space

Seven US companies collaborate with NASA to advance space capabilities

SPACE MEDICINE
Astroscale expands operations to France and secures contract with CNES

NASA engineers help create a virtual world of data

Astroscale's ELSA-d Prepares for Controlled De-orbit in Final Mission Phase

Unveiling the secrets of liquid iron under extreme conditions

SPACE MEDICINE
Reconstructing alien astronomers' view of our home galaxy's chemistry

Webb Rules Out Thick Carbon Dioxide Atmosphere for Rocky Exoplanet

New era of exoplanet discovery begins with images of 'Jupiter's Younger Sibling'

Evidence of the amino acid tryptophan found in space

SPACE MEDICINE
Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Juno captures lightning bolts above Jupiter's north pole

Colorful Kuiper Belt puzzle solved by UH researchers

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.