24/7 Space News
TIME AND SPACE
Space-based quantum science lab keeps getting better
The ISS Cold Atom Lab.
Space-based quantum science lab keeps getting better
by Staff Writers
Pasadena CA (JPL) Aug 08, 2023

The agency's Cold Atom Lab is getting its second major upgrade and will be using it to explore the quantum realm.

On Tuesday, Aug. 1, a major hardware update for NASA's Cold Atom Lab lifted off aboard a Northrop Grumman Cygnus resupply spacecraft on its way to the International Space Station. About the size of a small refrigerator, the lab is sometimes called the coolest place in the known universe because of its ability to chill atoms to almost absolute zero. It enables dozens of scientists on Earth to do experiments in quantum science, the study of the fundamental behaviors of atoms and particles that make up the world around us.

The field of quantum science has led to the development of such everyday technologies as lasers, transistors (a key component in smartphones and computers), GPS satellites, and medical devices. Future advances in the field promise to improve space-based navigation and communications.

Installed in 2018, the Cold Atom Lab is the first facility of its kind, and the mission team has experienced a steep learning curve as they figure out how, in the weightless environment of the station, to remotely do experiments designed on Earth. The new hardware - which the team calls the Quantum Observer Module - incorporates some of the lessons learned over Cold Atom Lab's five years of operations.

"The experiments we're performing on the Cold Atom Lab will someday allow us to measure gravity with unprecedented precision, and that's an extremely valuable tool to have in space," said Jason Williams, Cold Atom Lab project scientist at NASA's Jet Propulsion Laboratory, which manages the facility for NASA.

One way to assess the density distribution of a planet or moon is to measure changes in gravity across the surface, so scientists can probe the composition of different worlds from orbit or track the movement of water on Earth. Measuring gravity also lets scientists measure the acceleration of a spacecraft, which could be used in precision space navigation.

In addition, quantum sensors could be used in space-based missions studying cosmological mysteries like dark matter and dark energy. Dark matter is an invisible material that pulls matter together across the universe, while dark energy is an even more mysterious phenomenon causing the expansion of the universe to accelerate.

Although Cold Atom Lab doesn't require astronauts to assist with its daily operations, a crew member will install the Quantum Observer Module this fall. Astronauts have supported previous upgrades and repairs to the lab.

Heart of the Matter
Atoms and particles are the building blocks of all known matter in the universe, but they don't always behave like the bigger objects they compose. Their quantum nature means they can oscillate between behaving like solid objects and behaving like waves, so they sometimes seem to be in two places at once. They can also instantaneously pass through physical barriers, a phenomenon called quantum tunneling.

Cold Atom Lab makes it easier to study the quantum behaviors of atoms. One way is by chilling atoms to small fractions of a degree above the lowest temperature matter can reach, absolute zero. This causes the atoms to move more slowly, which makes them easier to study. In addition, some atoms at this temperature can collectively form a Bose-Einstein Condensate, a state of matter wherein their quantum behaviors, which are typically microscopic, can be observed on a macroscopic scale.

Scientists have performed cold atom experiments on the ground for decades, but on Earth, atoms studied in vacuum chambers fall quickly to the floor due to gravity. Inside Cold Atom Lab, atoms float weightlessly for longer periods, giving scientists more time to manipulate them and study how they behave and evolve. Researchers can also manipulate the ultracold atoms into bubbles and other unique shapes that are impossible to form on Earth. This reveals how different geometries affect the behavior of quantum materials.

Quantum Leap
The Cold Atom Lab upgrade will produce two to three times more atoms for each experiment inside the facility. "That's analogous to upgrading to a telescope with higher resolution," said Williams. "With more atoms, scientists can collect more data in each experiment, and they can also expand the variety of experiments they can do."

Scientists will get more nuanced views of the behaviors of the ultracold atoms, including their physical dynamics as they evolve and their interactions with one another. And since atom clouds naturally cool as they expand, more atoms also mean the atoms can reach colder temperatures before they fully disperse.

"We hope that Cold Atom Lab will mark the start of an era where quantum tools are used regularly in space," said Kamal Oudrhiri, the project manager for Cold Atom Lab at JPL. "Because of Cold Atom Lab, we've shown that these delicate quantum tools are reliable and even upgradable in space. It's our hope that Cold Atom Lab will be just the first of many quantum space missions to come."

Related Links
Cold Atom Lab at JPL
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Calculations reveal high-resolution view of quarks inside protons
Upton NY (SPX) Aug 04, 2023
A collaboration of nuclear theorists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Argonne National Laboratory, Temple University, Adam Mickiewicz University of Poland, and the University of Bonn, Germany, has used supercomputers to predict the spatial distributions of charges, momentum, and other properties of "up" and "down" quarks within protons. The results, just published in Physical Review D, revealed key differences in the characteristics of the up and down quarks. ... read more

TIME AND SPACE
Russian cosmonauts perform spacewalk to attach debris shields to space station

Advanced Space selected for two NASA SBIR Phase I Awards

NASA and Axiom Space join forces for fourth private mission in 2024

NASA announces crew for 2024 ISS rotation mission

TIME AND SPACE
Impulse Space secures $45M in Series A Funding Round

Rocket Lab inks new deal to launch HASTE mission from Virginia

Boeing says troubled Starliner will be ready to fly crew by March

Hypersonics Capability Center: Northrop Grumman's next step beyond Mach 5

TIME AND SPACE
Organic molecules in Martian crater help to reconstruct planet's history

Mars once had wet-dry climate conducive to supporting life: study

InSight study finds Mars is spinning faster

Ingenuity flies again after unscheduled landing

TIME AND SPACE
China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

TIME AND SPACE
ESA's Space Environment Report 2023

US storms, natural disasters push up insurance costs: Swiss Re

Eutelsat and Thaicom to partner for new software-defined satellite over Asia

Astra Space optimizes workforce to support sustainable long-term business plan

TIME AND SPACE
New method simplifies the construction process for complex materials

Sensing and controlling microscopic spin density in materials

Umbra achieves Commercial SAR milestone with 16-cm resolution

DLR harnesses 3D Printing for efficient production of spaceflight components

TIME AND SPACE
Chemical contamination on International Space Station is out of this world

New exoplanet discovery builds better understanding of planet formation

Violent Atmosphere Gives Rare Look at Early Planetary Life

Using cosmic weather to study which worlds could support life

TIME AND SPACE
Looking for Light with New Horizons

James Webb Space Telescope sees Jupiter moons in a new light

NASA's Juno Is Getting Ever Closer to Jupiter's Moon Io

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.