. 24/7 Space News .
EARTH OBSERVATION
Solid aerosols found in Arctic atmosphere could impact cloud formation
by Staff Writers
Ann Arbor MI (SPX) Mar 30, 2022

illustration only

The Arctic is rapidly losing sea ice, and less ice means more open water, and more open water means more gas and aerosol emissions from the ocean into the air, warming the atmosphere and making it cloudier.

So when researchers from the lab of University of Michigan aerosol scientist Kerri Pratt collected aerosols from the Arctic atmosphere during summer 2015, Rachel Kirpes, then a doctoral student, discovered a curious thing: Aerosolized ammonium sulfate particles didn't look like typical liquid aerosols.

Working with fellow aerosol scientist Andrew Ault, Kirpes discovered that ammonium sulfate particles, which should have been liquid, were actually solid. The team's results are published in the Proceedings of the National Academy of Sciences.

Solid aerosols can change how clouds form in the Arctic. And, as the Arctic loses ice, researchers expect to see more of these unique particles formed from oceanic emissions combined with ammonia from birds, which will impact cloud formation and climate. Additionally, understanding the characteristics of aerosols in the atmosphere is critical for improving the ability of climate models to predict current and future climate in the Arctic and beyond.

"The Arctic is warming faster than anywhere else in the world. As we have more emissions from open water in the atmosphere, these types of particles could become more important," said Pratt, associate professor of chemistry, and earth and environmental sciences. "These types of observations are so critical because we have so few observations to even evaluate the accuracy of models of the Arctic atmosphere.

"With so few observations, sometimes you get surprises like this when you make measurements. These particles didn't look like anything we had ever seen in the literature, in the Arctic, or anywhere else in the world."

The aerosols observed in the study were up to 400 nanometers, or about 300 times smaller than the diameter of a human hair. Ault, associate professor of chemistry, says that aerosols in the Arctic are typically assumed to be liquid.

Once the relative humidity of the atmosphere reaches 80%-about the level of a humid day-the particle becomes liquid. When you dry the aerosol back out, it doesn't turn into a solid until the relative humidity is about 35%-40%. Because the air over the Arctic Ocean-or any ocean-is humid, researchers expect to see liquid aerosols.

"But what we saw is a pretty new phenomenon where a small particle collides with our droplets when it's below 80% humidity, but above 40% humidity. Essentially, this provides a surface for the aerosol to solidify and become a solid at a higher relative humidity than you would have expected," Ault said.

"These particles were much more like a marble than a droplet. That's really important, particularly in a region where there haven't been a lot of measurements because those particles can eventually end up acting as the seeds of clouds or having reactions happen on them."

Additionally, the researchers say, the size, composition and phase of atmospheric aerosols impact climate change through water uptake and cloud formation.

"It's our job to keep helping modelers refine their models," Ault said. "It's not that the models are wrong, but they always need more new information as events on the ground change, and what we saw was something completely unexpected."

Pratt's team collected aerosols in August-September 2015 in Utqiagvik, the northernmost point of Alaska. To do this, they used what's called a multistage impactor, a device that has several stages that collect particles according to their size. Kirpes later analyzed these particles in Ault's lab using microscopy and spectroscopy techniques that can examine the composition and phase of particles less than 100 nanometers in size.

"If we were to go back several decades when there was ice near the shore, even in August and September, we would not be observing these particles. We're observing the consequences of this climate already changing," Pratt said. "We need to have the reality captured in models that simulate clouds and the atmosphere, which are critical for understanding the energy budget of the Arctic atmosphere, for this place that is changing faster than anywhere else."

Research Report: "Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere"


Related Links
University of Michigan
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
CH4 responsible for more than 80% of recent atmospheric methane growth
Washington DC (UPI) Mar 16, 2021
Tropical terrestrial methane emissions were the driving factor of changes in methane growth over the past decade, according to a study released Wednesday. More than 80% of observed changes in the global atmospheric methane growth rate from 2010 to 2019 were the result of tropical terrestrial methane emissions, or CH4, according to the study published in Nature Communications. One of the study's authors, Yi Liu, professor at the Institute of Atmospheric Physics of the Chinese Academy of S ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
A tool for predicting the future

On the road to cultured meat for astronauts and Earthlings

At IAF anniversary celebration, a plea for continued cooperation in Space

Russian, US ISS record-holders return to earth

EARTH OBSERVATION
Full-scale static test concludes qualification testing for Orion spacecraft abort motor

Viability of using commercial rockets to transport cargo quickly focus of Space Force research

Long March 6A blasts off in Shanxi

Orbex and FORCE Technology to develop advanced rocket engine testing

EARTH OBSERVATION
Frozen beauty in northern Mars

Mounds of ice in craters give new insight into Mars' past climate

Next steps for ExoMars with the rover ready

Sols 3425-3427: Vuggy Buggy

EARTH OBSERVATION
Shenzhou XIII astronauts prep for return

China's Tianzhou-2 cargo craft leaves space station core module

China's space station to support large-scale scientific research

Chief designer details China's future lunar missions

EARTH OBSERVATION
Viasat, Inmarsat to boost UK space industry investments

SES adds satellite to extend services across Europe, Africa and Asia

Tailwind completes Terran Orbital acquisition process

High Throughput Satellites set to boom

EARTH OBSERVATION
NASA researcher finding ways to turn down the heat in cities

Artificial modification of Earth's radiation belts by ground-based VLF transmitters

Romania to distribute iodine tablets amid Ukraine war

A better way to separate gases

EARTH OBSERVATION
Methane could be the first detectable indication of life beyond Earth

NASA confirms more than 5,000 planets outside the solar system

Scientists unlock mystery rooted in the deepest past of evolution

New insight into the possible origins of life

EARTH OBSERVATION
Juice's journey and Jupiter system tour

Pluto's giant ice volcanos may have formed from multiple eruption events

Chaos terrains on Europa could be shuttling oxygen to ocean

Searching for Planet Nine









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.