. 24/7 Space News .
SOLAR SCIENCE
Solar Cycle 25 is here. NASA, NOAA scientists explain what that means
by Staff Writers
Washington DC (SPX) Sep 16, 2020

This split image shows the difference between an active Sun during solar maximum (on the left, captured in April 2014) and a quiet Sun during solar minimum (on the right, captured in December 2019). December 2019 marks the beginning of Solar Cycle 25, and the Sun's activity will once again ramp up until solar maximum, predicted for 2025.

Solar Cycle 25 has begun. During a media event on Tuesday, experts from NASA and the National Oceanic and Atmospheric Administration (NOAA) discussed their analysis and predictions about the new solar cycle - and how the coming upswing in space weather will impact our lives and technology on Earth, as well as astronauts in space.

The Solar Cycle 25 Prediction Panel, an international group of experts co-sponsored by NASA and NOAA, announced that solar minimum occurred in December 2019, marking the start of a new solar cycle. Because our Sun is so variable, it can take months after the fact to declare this event. Scientists use sunspots to track solar cycle progress; the dark blotches on the Sun are associated with solar activity, often as the origins for giant explosions - such as solar flares or coronal mass ejections - which can spew light, energy, and solar material into space.

"As we emerge from solar minimum and approach Cycle 25's maximum, it is important to remember solar activity never stops; it changes form as the pendulum swings," said Lika Guhathakurta, solar scientist at the Heliophysics Division at NASA Headquarters in Washington.

NASA and NOAA, along with the Federal Emergency Management Agency and other federal agencies and departments, work together on the National Space Weather Strategy and Action Plan to enhance space weather preparedness and protect the nation from space weather hazards. NOAA provides space weather predictions and satellites to monitor space weather in real time; NASA is the nation's research arm, helping improve our understanding of near-Earth space, and ultimately, forecasting models.

Space weather predictions are also critical for supporting Artemis program spacecraft and astronauts. Surveying this space environment is the first step to understanding and mitigating astronaut exposure to space radiation. The first two science investigations to be conducted from the Gateway will study space weather and monitor the radiation environment in lunar orbit. Scientists are working on predictive models so they can one day forecast space weather much like meteorologists forecast weather on Earth.

"There is no bad weather, just bad preparation," said Jake Bleacher, chief scientist for NASA's Human Exploration and Operations Mission Directorate at the agency's Headquarters. "Space weather is what it is - our job is to prepare."

Understanding the cycles of the Sun is one part of that preparation. To determine the start of a new solar cycle, the prediction panel consulted monthly data on sunspots from the World Data Center for the Sunspot Index and Long-term Solar Observations, located at the Royal Observatory of Belgium in Brussels, which tracks sunspots and pinpoints the solar cycle's highs and lows.

"We keep a detailed record of the few tiny sunspots that mark the onset and rise of the new cycle," said Frederic Clette, the center's director and one of the prediction panelists. "These are the diminutive heralds of future giant solar fireworks. It is only by tracking the general trend over many months that we can determine the tipping point between two cycles."

With solar minimum behind us, scientists expect the Sun's activity to ramp up toward the next predicted maximum in July 2025. Doug Biesecker, panel co-chair and solar physicist at NOAA's Space Weather Prediction Center (SWPC) in Boulder, Colorado, said Solar Cycle 25 is anticipated to be as strong as the last solar cycle, which was a below-average cycle, but not without risk.

"Just because it's a below-average solar cycle, doesn't mean there is no risk of extreme space weather," Biesecker said. "The Sun's impact on our daily lives is real and is there. SWPC is staffed 24/7, 365 days a year because the Sun is always capable of giving us something to forecast."

Elsayed Talaat, director of Office of Projects, Planning, and Analysis for NOAA's Satellite and Information Service in Silver Spring, Maryland, described the nation's recent progress on the Space Weather Action Plan as well as on upcoming developments, including NOAA's Space Weather Follow-On L-1 observatory, which launches in 2024, before Solar Cycle 25's predicted peak.

"Just as NOAA's National Weather Service makes us a weather-ready nation, what we're driving to be is a space weather-ready nation," Talaat said. "This is an effort encompassing 24 agencies across the government, and it has transformed space weather from a research perspective to operational knowledge.
Related Links
World Data Center for the Sunspot Index and Long-term Solar Observations
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
The presence of resonating cavities above sunspots has been confirmed
Brena Baja, Spain (SPX) Sep 10, 2020
Sunspots are darker regions which often appear on the Sun's surface. They are caused by strong concentrations of magnetic field, and can be as big as the Earth, or even much bigger. From the end of the 1960's the presence of oscillations in the atmospheres of these spots has been known, and interpreted as evidence for magnetic waves. These waves have attracted the interest of the researchers, because they could transport energy from the interior layers of the Sun up to the outer regions of the sol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
NASA Goddard's first virtual interns reflect on their summer experience

ISS may need to evade US Military cubesat

Israeli tech start-ups take on the Emirates

Backbone of a spacecraft for missions to deep space

SOLAR SCIENCE
China's launch of new satellite fails

Fiery Blast After Astra Rocket Launch Fail in Kodiak

Gilmour Space to launch Space Machines Company on first Eris rocket

India eyes hypersonic cruise missile with domestically-made scramjet engine

SOLAR SCIENCE
China's Mars probe travels 137 mln km

ERC Space and Robotics Event 2020

The ERC 2020 shows how to adapt in a post-pandemic world

Surprise on Mars

SOLAR SCIENCE
Chinese spacecraft launched mystery object into space before returning to Earth

China's reusable spacecraft returns to Earth after 2 days

Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

SOLAR SCIENCE
Dragonfly Aerospace emerges from SCS Aerospace Group

COMSAT expands hardware footprint with new Orbit Communications Systems agreement

Wanted: your ideas for ESA's future space missions

Satellogic launches 11th satellite to low-earth orbit

SOLAR SCIENCE
Giant particle accelerator in the sky

Northrop's 'life extension' spacecraft heads to the rescue

ESA's polar station marks three decades satellite tracking

Announcing Homestead: satellite ground station coming soon to Chippewa County

SOLAR SCIENCE
Scientists find gas on Venus linked to life on Earth

A warm Jupiter orbiting a cool star

AI used to show how hydrogen becomes a metal inside giant planets

Carbon-rich exoplanets may be made of diamonds

SOLAR SCIENCE
Astronomers characterize Uranian moons using new imaging analysis

Atomistic modelling probes the behavior of matter at the center of Jupiter

Jupiter's moons could be warming each other

Technology ready to explore subsurface oceans on Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.