. | . |
Soil freeze-thaw stimulates nitrous oxide emissions from alpine meadows by Staff Writers Beijing, China (SPX) Jan 10, 2018
The rising concentrations of greenhouse gases in the atmosphere lead to global warming, which is a major challenge for the sustainable development of human society. The Qinghai-Tibetan Plateau with widespread distribution of seasonal frozen soil is very sensitive to global warming. Soil freeze-thaw is a common natural phenomenon in the plateau, which can not only change the water and heat conditions, and the physical and chemical properties of soil, but also influence greatly the biosphere-atmosphere exchanges of greenhouse gases. In a recently published study in Agricultural Ecosystem and Environment, scientists from Institute of Atmospheric Physics, Chinese Academy of Sciences continuously investigated the methane (CH4) and nitrous oxide (N2O) fluxes between biosphere and atmosphere in an alpine Potentilla fruticosa shrub meadow in the Qinghai-Tibetan Plateau over three years. They found that the annual CH4 uptake and temperature sensitivity coefficient (Q10) were at the low end of the range for natural grasslands in China, which indicated that global warming at the same extent would result in less of an increase in the CH4 sink in the Qinghai-Tibetan Plateau. The N2O emissions during the spring thaw period showed a tremendous inter-annual variation, which was closely linked to the variation in annual precipitation, especially the precipitation of the previous growing season. The high substrate concentrations and soil moisture during the spring thaw periods together provided the conditions for pulse N2O emissions. Global warming prolongs the duration of soil freeze-thaw on the Qinghai-Tibetan Plateau and therefore, would stimulate the emissions of N2O, a greenhouse gas with nearly 300 times the global warming potential of carbon dioxide that also depletes stratospheric ozone.
Pasadena CA (JPL) Jan 04, 2018 A new NASA-led study has solved a puzzle involving the recent rise in atmospheric methane, a potent greenhouse gas, with a new calculation of emissions from global fires. The new study resolves what looked like irreconcilable differences in explanations for the increase. Methane emissions have been rising sharply since 2006. Different research teams have produced viable estimates for two k ... read more Related Links Institute of Atmospheric Physics, Chinese Academy of Sciences Earth Observation News - Suppiliers, Technology and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |