. 24/7 Space News .
SPACE MEDICINE
Slowing Biological Time to Extend the Golden Hour for Lifesaving Treatment
by Staff Writers
Washington DC (SPX) Mar 06, 2018

DARPA's Biostasis program aims to prevent death following traumatic injury by slowing biochemical reactions inside cells, thus extending the "golden hour" for medical intervention. The desired interventions would be effective for only limited durations before the process reverts and biological processes resume at normal speeds.

When a Service member suffers a traumatic injury or acute infection, the time from event to first medical treatment is usually the single most significant factor in determining the outcome between saving a life or not. First responders must act as quickly as possible, first to ensure a patient's sheer survival and then to prevent permanent disability.

The Department of Defense refers to this critical, initial window of time as the "golden hour," but in many cases the opportunity to successfully intervene may extend much less than sixty minutes, which is why the military invests so heavily in moving casualties as rapidly as possible from the battlefield to suitable medical facilities. However, due to the realities of combat, there are often hard limits to the availability of rapid medical transport and care.

DARPA created the Biostasis program to develop new possibilities for extending the golden hour, not by improving logistics or battlefield care, but by going after time itself, at least how the body manages it.

Biostasis will attempt to directly address the need for additional time in continuously operating biological systems faced with catastrophic, life-threatening events.

The program will leverage molecular biology to develop new ways of controlling the speed at which living systems operate, and thus extend the window of time following a damaging event before a system collapses. Essentially, the concept aims to slow life to save life.

"At the molecular level, life is a set of continuous biochemical reactions, and a defining characteristic of these reactions is that they need a catalyst to occur at all," said Tristan McClure-Begley, the Biostasis program manager.

"Within a cell, these catalysts come in the form of proteins and large molecular machines that transform chemical and kinetic energy into biological processes. Our goal with Biostasis is to control those molecular machines and get them to all slow their roll at about the same rate so that we can slow down the entire system gracefully and avoid adverse consequences when the intervention is reversed or wears off."

The program will pursue various approaches to slowing down biochemical processes in living cells. Ideally, these approaches will scale from simple biological treatments such as antibodies to more holistic treatments applicable to whole cells and tissues, eventually scaling all the way up to the level of a complete organism. Successful approaches will meet the conditions that the system be slowed across all measurable biological functions and that it do so with minimal damage to cellular processes when the system reverts and resumes normal speed.

"Our treatments need to hit every cellular process at close to the same rate, and with the same potency and efficacy," McClure-Begley said. "We can't focus treatments to interrupt just a subset of known critical processes."

For example, cellular respiration is critical for many cellular processes, but those other processes do not shut down in tandem if respiration is blocked. The maladaptive responses from such an intervention would ultimately kill the cell.

Instead, DARPA is looking for biochemical approaches that control cellular energetics at the protein level. Proteins are the workhorses of cellular functions, and nature offers several examples of organisms that use proteins to help them survive extreme environmental conditions. Creatures such as tardigrades and wood frogs exhibit a capability known as "cryptobiosis," a state where all metabolic processes appear to have stopped, yet life persists.

In the case of tardigrades-microscopic invertebrates colloquially known as "water bears"-they can survive freezing, near total dehydration, and extreme radiation. Wood frogs, meanwhile, can survive being frozen completely solid for days on end.

And while the specific molecular mechanisms involved in these animals are very different, they share a common biochemical concept: they selectively stabilize their intracellular machinery.

"Nature is a source of inspiration," McClure-Begley said. "If we can figure out the best ways to bolster other biological systems and make them less likely to enter a runaway downward spiral after being damaged, then we will have made a significant addition to the biology toolbox."

Biostasis is initially aimed at generating proof-of-concept, benchtop technologies and testing their application in simple living systems for experimental validation. To support eventual transition to patients, DARPA will work with federal health and regulatory agencies as the program advances to develop a pathway for potential, future human medical use. By the end of the five-year, fundamental research program DARPA hopes to have multiple tools for reducing the risk of permanent damage or death following acute injury or infection.

Similar Biostasis technologies could also extend the shelf-life of blood products, biological reagents, and drugs by reducing reaction times. Early program research is aimed at identifying approaches that can be tested in simple biological systems such as enzyme complexes or cell lines. If this aspect of the program is successful, these technologies would help to reduce the Defense Department's logistical burden of transporting biological products into the field.

DARPA will hold a Proposers Day webinar on March 20, 2018, at 12:30 PM EDT to provide more information about Biostasis and answer questions from potential proposers. For details of the event, including registration requirements, visit: https://go.usa.gov/xnzqE.

A full program description will be made available in a forthcoming Broad Agency Announcement.


Related Links
Defense Advanced Research Projects Agency
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
New technology may protect troops from blast-induced brain injury
Baltimore MD (SPX) Feb 27, 2018
Researchers from theUniversity of Maryland School of Medicine (UMSOM) and the University of Maryland A. James Clark School of Engineering have developed a new military vehicle shock absorbing device that may protect troops from traumatic brain injury (TBI) after a land mine blast. Over the past 18 years of conflicts in Iraq and Afghanistan, more than 250,000 troops have suffered such injuries. The research, conducted jointly by Gary Fiskum, PhD, M. Jane Matjasko Professor for Research and Vice-Cha ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Cosmonaut, two US astronauts return to Earth from ISS

ISS Expedition 54 crew land safely in Kazakhstan

Aerospace introduces new Senior Advisory Council for space policy

International team publishes roadmap to enhance radioresistance for space colonization

SPACE MEDICINE
SLS Intertank loaded for shipment, structural testing

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

Space-X lobs Spanish military satellite into orbit

Millenium tapped for certification of Vulcan space launch systems

SPACE MEDICINE
Curiosity tests a new way to drill on Mars

NASA InSight mission to Mars arrives at launch site

Atacama Desert study offers glimpse of what life on Mars could look like

Life in world's driest desert seen as sign of potential life on Mars

SPACE MEDICINE
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

SPACE MEDICINE
Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

Iridium Certus broadband readies for DOD wsers with COMSAT

SPACE MEDICINE
Common bricks can be used to detect past presence of uranium, plutonium

Majorana runners go long range: New topological phases of matter unveiled

Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

SPACE MEDICINE
NASA finds a large amount of water in an exoplanet's atmosphere

When two species become one: New study examines 'speciation reversal'

Alien life in our Solar System? Study hints at Saturn's moon

When do aging brown dwarfs sweep the clouds away?

SPACE MEDICINE
Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.