. 24/7 Space News .
Silicon Nanoparticles Now Come In Family Of Sizes And Fluorescent Colors

illustration only

Urbana-Champaign - Jan 28, 2002
A process for creating silicon nanoparticles, developed at the University of Illinois, has now been shown to produce a family of discrete particle sizes useful for microelectronics, optoelectronics and biomedical applications.

As reported in the Jan. 21 issue of Applied Physics Letters, researchers demonstrated that the electrochemically etched particles come in particular sizes and fluoresce in distinct colors. The smallest four sizes are blue, green, yellow and red luminescent particles.

"The availability of specific particle size and emission in the red, green and blue range makes the particles useful for electronic displays and flash memories," said Munir Nayfeh, a UI professor of physics and corresponding author of the APL paper. "The benign nature of silicon also makes the particles useful as ultra-bright fluorescent markers for tagging biologically sensitive materials."

Current medical and biological fluorescent imaging is limited by the use of dye markers, which are not photostable, Nayfeh said. The dyes can break down under photoexcitation, room light or higher temperatures.

Not only are the new silicon particles photostable, they are also bright. The light from a single nanoparticle can be readily detected.

To convert bulk silicon into nanoparticles, Nayfeh and his colleagues use an electrochemical treatment that involves gradually immersing a silicon wafer into an etchant bath of hydrofluoric acid and hydrogen peroxide while applying an electrical current.

The process erodes the surface layer of the material, leaving behind a delicate network of weakly interconnected nanostructures. The wafer is then removed from the etchant and immersed briefly in an ultrasound bath.

Under the ultrasound treatment, the fragile nanostructure network crumbles into individual particles, which may be easily separated into the different size groups.

"The availability of different colored markers is very important for biomedical applications," said Nayfeh, who also is a researcher at the UI's Beckman Institute for Advanced Science and Technology. "By placing particles of different colors in strategic locations, you could study such phenomena as growth factors in cancer cells or how proteins fold."

The silicon particles fluoresce when struck with ultraviolet light. They also can fluoresce when struck with two photons of infrared light -- a technique that can non-invasively penetrate human tissue.

In a separate paper, published in the Jan. 7 issue of Applied Physics Letters, the researchers also demonstrated laser oscillation in small aggregates of the silicon nanoparticles.

"At 6 microns in diameter, these clusters of particles are one of the smallest lasers in the world," said Sahraoui Chaieb, a UI professor of theoretical and applied mechanics and a co-author of both papers. "This microlasing is an important step towards the realization of a laser on a chip, which could ultimately replace wires with optical interconnects."

The emission was dominated by a deep-red color, said Chaieb, who also is a researcher at the Beckman Institute. The clusters are currently stimulated by green light from a mercury lamp. One of the researchers' goals is to excite them instead with electricity.

The research team included Nicholas Barry and Paul Braun at the UI and Lubos Mitas at North Carolina State University. Funding was provided by the National Science Foundation and the Illinois Department of Commerce and Community Affairs.

Related Links
University of Illinois at Urbana-Champaign
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Nanotube 'Peapods' Have Tunable Electronic Properties
Urbana-Champaign - Jan 28, 2002
First came fullerenes, those cage-like molecules of 60 carbon atoms bound in a ball. Then came long, thin soda straws of carbon atoms called nanotubes. Now there are fullerenes nested within nanotubes, like so many peas in a pod.







  • Building Viable Space Markets
  • Space Adventures Announces Second Client To Fly To The International Space Station
  • Gender Issues Related To Spaceflight: A NASA Perspective
  • Bush Appoints Bean Counter In Bid To Salvage NASA From ISS Overruns

  • Dealing for Rover Wheeling on Mars
  • Finely Tuned Odyssey Ready To Map
  • Robotic Mars Construction Crew Rolls Up Its Sleeve
  • Researchers create robotic "bugs" to explore Mars

  • First Ariane For 2002 Up Tonight
  • INSAT-3C Transported to Kourou For January Launch
  • Last Boeing Delta 2 For 2001 Will Launch An Argonaut
  • Canada's First Space Telescope to Ride a "Rockot"

  • Getting The Details On Earth
  • Envisat Set To Flood Earth With New Data
  • Envisat No. 1 -- Europe's Environment Satellite
  • New views of Earth

  • Out To The Horizon Of Sol
  • Surviving Oblivion In Deep Space
  • Into The Deep Space Of Nowhere
  • Into The Deep Space Of Nowhere

  • NASA Says Its A New Dawn For Discovery
  • A Small Spherical Universe after All?
  • Ulysses Gets A New Partner In The Hunt For The Source Of Gamma-Ray Bursts
  • Cluster Tunes Into Radio Earth

  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings
  • Unique tasks for SMART-1 in exploring the Moon
  • NASA Seeks Berth On India's Moon Mission

  • Automotive Telematics Industry Maturing Poised for Growth
  • Terrorism Attacks Accelerate Interest in GPS Applications, Says Allied Business Intelligence
  • Global Positioning System May Help Measure Sea Height
  • Paradigm Chosen to Provide GPS-based Tracking for Highly Sensitive Security Application

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement