. 24/7 Space News .
PHYSICS NEWS
Sierras lost water weight, grew taller during drought
by Carol Rasmussen for NASA Earth Science News
Pasadena CA (JPL) Dec 18, 2017


The Sierra Nevada range rose almost an inch during California's recent drought due to loss of water from within fractured rocks.

Loss of water from the rocks of California's Sierra Nevada caused the mountain range to rise nearly an inch (24 millimeters) in height during the drought years from October 2011 to October 2015, a new NASA study finds.

In the two following years of more abundant snow and rainfall, the mountains have regained about half as much water in the rock as they had lost in the preceding drought and have fallen about half an inch (12 millimeters) in height.

"This suggests that the solid Earth has a greater capacity to store water than previously thought," said research scientist Donald Argus of NASA's Jet Propulsion Laboratory in Pasadena, California, who led the study. Significantly more water was lost from cracks and soil within fractured mountain rock during drought and gained during heavy precipitation than hydrology models show.

Argus is giving a talk on the new finding at the American Geophysical Union's fall conference in New Orleans.

The research team used advanced data-processing techniques on data from 1,300 GPS stations in the mountains of California, Oregon and Washington, collected from 2006 through October 2017.

These research-quality GPS receivers were installed as part of the National Science Foundation's Plate Boundary Observatory to measure subtle tectonic motion in the region's active faults and volcanoes. They can monitor elevation changes within less than a tenth of an inch (a few millimeters).

The team found that the amount of water lost from within fractured mountain rock in 2011-2015 amounted to 10.8 cubic miles of water. This water is too inaccessible to be used for human purposes, but for comparison, the amount is 45 times as much water as Los Angeles currently uses in a year.

JPL water scientist Jay Famiglietti, who collaborated on the research, said the finding solves a mystery for hydrologists.

"One of the major unknowns in mountain hydrology is what happens below the soil. How much snowmelt percolates through fractured rock straight downward into the core of the mountain? This is one of the key topics that we addressed in our study."

Earth's surface falls locally when it is weighed down with water and rebounds when the weight disappears. Many other factors also change the ground level, such as the movement of tectonic plates, volcanic activity, high- and low-pressure weather systems, and Earth's slow rebound from the last ice age. The team corrected for these and other factors to estimate how much of the height increase was solely due to water loss from rock.

Before this study, scientists' leading theories for the growth of the Sierra were tectonic uplift or Earth rebounding from extensive groundwater pumping in the adjoining California Central Valley. Argus calculated that these two processes together only produced a quarter of an inch (7 millimeters) of growth - less than a third of the total.

Famiglietti said the techniques developed for this study will allow scientists to begin exploring other questions about mountain groundwater.

"What does the water table look like within mountain ranges? Is there a significant amount of groundwater stored within mountains? We just don't have answers yet, and this study identities a set of new tools to help us get them."

A paper on the research, titled "Sustained water loss in California's mountain ranges during severe drought from 2012 through 2015 inferred from GPS," was published in the Journal of Geophysical Research: Solid Earth.

PHYSICS NEWS
Researchers measure magnetic moment with greatest possible precision
Mainz, Germany (SPX) Nov 30, 2017
The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten years ago, and physicists of Johannes Gutenberg University Mainz (JGU), the Max Planck Institute for Nuclear Physics, GSI Darmstadt, and the RIKEN research institute in Japan are still performing experiments to measure this force with a sin ... read more

Related Links
Water Science at NASA
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
NASA Establishes Advisory Group for National Space Council

PARC to Partner with Commercial Space Leader to Accelerate Space R and D

'Dragon back' as cargo reaches space station

SpaceX resupply truck Dragon on route to ISS for space research delivery

PHYSICS NEWS
In first, SpaceX launches recycled rocket and spaceship

Russian space agency blames satellite loss on programming error

ArianeGroup signs contract with ESA for future Prometheus engine

Rocket Lab makes another attempt at rocket launch in New Zealand

PHYSICS NEWS
Planting oxygen ensures a breath of fresh air

Designing future human space exploration on Hawaii's lava fields

Opportunity Comes to a Fork in the Road

Space program should focus on Mars, says editor of New Space

PHYSICS NEWS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

PHYSICS NEWS
Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

PHYSICS NEWS
Physicists excited by discovery of new form of matter, excitonium

Brittle starfish shows how to make tough ceramics

Russia says 'satellite' could have caused radioactive pollution

Army taps Northrop Grumman for new radar risk reduction work

PHYSICS NEWS
Life's building blocks observed in spacelike environment

NASA uses AI to uncover eighth planet circling distant star

No alien 'signals' from cigar-shaped asteroid: researchers

Two Super-Earths around red dwarf K2-18

PHYSICS NEWS
Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.