. 24/7 Space News .
WATER WORLD
Shrub encroachment on grasslands can increase groundwater recharge
by Staff Writers
Riverside CA (SPX) May 18, 2020

A flume at the outlet of the watershed that measures streamflow.

Grasslands across the globe, which support the majority of the world's grazing animals, have been transitioning to shrublands in a process that scientists call "woody plant encroachment."

Managed grazing of drylands is the most extensive form of land use on the planet, which has led to widespread efforts to reverse this trend and restore grass cover due to the belief that it results in less water entering streams and groundwater aquifers.

A new study led by Adam Schreiner-McGraw, a postdoctoral hydrology researcher at the University of California, Riverside, modeled shrub encroachment on a sloping landscape and reached a startling conclusion: Shrub encroachment on slopes can increase the amount of water that goes into groundwater storage. The effect of shrubs is so powerful that it even counterbalances the lower annual rainfall amounts expected during climate change.

Until now, researchers have thought that woody plants like trees and shrubs have deeper roots than grass. This belief stemmed from scientists performing their related studies on flat ground.

"It is striking that ecosystem composition is what controls projected future changes to groundwater recharge," Schreiner-McGraw said. "This does not mean that climate change is not important, but that vegetation change is potentially more important and something that scientists and land managers should focus more effort on understanding."

Co-author Hoori Ajami, an assistant professor of groundwater hydrology at UC Riverside, said the paper looks at the combined effects of climate and vegetation change on groundwater-recharge processes in arid environments.

"Most studies to date have looked at these changes in isolation," Ajami said. "Here we illustrate that the combined effects of vegetation change and climate change could be greater or less than the sum of its parts."

The intrusion of shrubs into grasslands is often considered a problem because it reduces the amount of forage available for livestock grazing and can lead to more bare ground patches and subsequent increase in soil erosion. This process of creating more bare ground is called "xerification." Climate change contributes to xerification, but fire suppression and overgrazing play the biggest roles.

It makes sense that shrubs, which have deep root systems along with thick stems and many leaves, capture more water than grass does as it percolates down through the soil, leaving less available water to replenish the underground aquifers. Research on "diffuse recharge," the process by which water replenishes groundwater supplies over a large area, seems to bear this out for flat landscapes. Xerification of grasslands has thus been viewed as bad for both livestock and the water cycle.

"We approached this research with a simple premise that topography plays a role in redistributing available water, and this should affect the outcomes of xerification," said co-author Enrique R. Vivoni, a professor at Arizona State University.

The group looked at focused recharge, which occurs when hillslopes funnel water into concentrated areas, such as streambeds. Streambeds often have sandy bottoms, which allow water to quickly infiltrate and prevent the deep-rooted shrubs from sucking it up.

Data from a highly monitored desert mountain slope in New Mexico was used to simulate the effects of woody plant encroachment and climate change on water resources. The team discovered that not only did the shrubs increase focused groundwater recharge, but that they did so even under conditions where climate change reduced the amount of rainfall.

They also modeled a more extensive form of shrub encroachment called thicketization, in which plants grow in dense stands with no bare patches, and found, as in prior flat landscape research, the shrubs reduced the amount of groundwater recharge on slopes as well.

On hillslopes, bare soil in between patches of shrubs is necessary to drive water into streambeds. Increased runoff increases focused groundwater recharge.

"We were surprised to find that a transition from grassland to shrubland can increase sustainability of groundwater aquifers," said Schreiner-McGraw. "The best way to increase focused recharge in this system is to increase the amount of runoff from hillslopes that gets concentrated in the streambeds."

Climate change will most likely increase groundwater recharge by making rainstorms larger, but less frequent. Larger storms increase the amount of runoff that reaches sandy-bottom channels and increases groundwater recharge. Findings from this study suggest vegetation will also play an important part in groundwater recharge in the future.

Though the study took place in New Mexico, Schreiner-McGraw said it applies to similar environments. Large parts of California are also desert savannahs. Southern California and the Central Valley have landforms similar to those found in the New Mexico study site. These areas could experience similar hydrological processes, though atmospheric rivers create storms very different from monsoon storms, so more research is required.

"The study highlights the role of long-term monitoring in understanding water balance dynamics of watersheds, and the role that process-based modeling plays in understanding system dynamics," Ajami said.

Research Report: "Woody Plant Encroachment has a Larger Impact than Climate Change on Dryland Water Budgets"


Related Links
University Of California - Riverside
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
A hydrological model leads to advances in the creation of a world water map
Andalusia, Spain (SPX) May 06, 2020
Water is a global resource which is essential for life on our planet, thus hydrological research and the study of its management has also become crucial work for the continuity of life on Earth. The availability of public data on water behavior such as data about river flow and rainfall are key for the research community in order to create a world water map. When drawing this map, the public and people who manage water resources on local scales also play important roles. By means of carrying out citizen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Google affiliate abandons futuristic neighborhood project

Spider eyes in space

Ready, set, go for COVID-conscious astronaut training

Airbus and Xenesis sign payload contract for Bartolomeo Platform on ISS

WATER WORLD
Launch Complex 39B prepared to support Artemis I

Firefly Aerospace achieves AS9100 Quality Certification and readies for first Firefly Alpha launch

Express satellites to be launched on 30 July, Proton-M repairs to end in June

Why our launch of the NASA and SpaceX Demo-2 mission to the ISS is essential

WATER WORLD
NASA's Perseverance Rover Spacecraft Put in Launch Configuration

NASA Perseverance Mars Rover Scientists Train in the Nevada Desert

NASA's Perseverance Rover Mission Getting in Shape for Launch

Perseverance Presses On, Remains Targeted for Summer Launch

WATER WORLD
China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

China's new spacecraft returns to Earth: official

China's space test hits snag with capsule 'anomaly'

WATER WORLD
Inmarsat launches solution for the rail industry

ThinKom completes Antenna Interoperability Demonstrations on Ku-Band LEO constellation

Building satellites amid COVID-19

Infostellar has raised a total of $3.5M in convertible bonds

WATER WORLD
Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

China tests 3D printing in space for first time

Liquid metal research invokes 'Terminator' film - but much friendlier

German 3D printing buffs pitch in with virus-fighting network

WATER WORLD
Scientists reveal solar system's oldest molecular fluids could hold the key to early life

Life on the rocks helps scientists understand how to survive in extreme environments

Study: Life might survive, and thrive, in a hydrogen world

Exoplanets: How we'll search for signs of life

WATER WORLD
Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter probe JUICE: Final integration in full swing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.