. 24/7 Space News .
CHIP TECH
Semiconductor spin qubits gain further credibility as leading platform for quantum computing
by Staff Writers
Delft, Netherlands (SPX) Jan 20, 2022

Artistic image of a two-qubit gate operation.

Researchers at QuTech-a collaboration between the Delft University of Technology and TNO-have taken an important step for semiconductor spin qubits by surpassing the 99% barrier for two-qubit gate fidelity. They report on their findings in Nature on 19 January 2021 and are featured on the issue's cover. Two independent works from groups at UNSW Sydney and at RIKEN report similar results in the same issue of Nature.

Semiconductor spin qubits are well positioned as the building block for a future quantum computer. Among all the candidate platforms, electron spins in semiconductor quantum dots have advantages for their long coherence times, small footprint, the potential for scaling up, and the compatibility with advanced semiconductor manufacturing technology.

A major challenge however is to implement operations with sufficient accuracy to arrive at a reliable outcome. The higher the accuracy-or fidelity-of the operations, the higher the likelihood that near-term applications for quantum computers come in reach. And the higher the likelihood that errors can be corrected faster than they appear.

The central requirement for correcting errors is expressed in terms of an error threshold. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. Single-qubit operations of spin qubits in quantum dots achieved fidelities of 99.9%, but the two-qubit gate fidelities reported, vary from 92% to 98%.

Important barrier
Researchers of QuTech have now realized a spin-based quantum processor in silicon with single- and two-qubit gate fidelities all above 99.5%. 'Now that this important 99% barrier for the two-qubit gate fidelity has been surpassed, semiconductor qubits have gained cridibility as a leading platorm, not only for scaling but also for high-fidelity control', says Xiao Xue, lead author of the publication in Nature.

'We used a gate-defined double quantum dot in an isotopically enriched 28Si/SiGe heterostructure, with each dot occupied by one single electron. Pushing the two-qubit gate fidelity well beyond 99% required improved materials and specially designed qubit control and calibration methods.'

Further improvements
A universal gate set with fidelity above 99.5% is an important step for semiconductor spin qubits. Independent studies have shown spin qubit readout with a fidelity above 98% in only a few us, with further improvements underway', says supervising researcher Lieven Vandersypen of QuTech.

'With a further effort in reducing crosstalk errors and in extending the device designs, we are optimistic that the individually demonstrated advantages of semiconductor spin qubits can be combined into a fault-tolerant and highly integrated quantum computer.'

Back-to-back publications
This publication is part of a back-to-back of three articles in Nature reporting high-fidelity two-qubit gates based on spin qubits in silicon. A team at RIKEN in Japan also made use of electron spin qubits in quantum dots, for which the team of Giordano Scappucci at QuTech provided the 28Si/SiGe material stack.

Their work is described in Nature (DOI). UNSW Sydney (University of New South Wales) used nuclear spins bound to Phosporous impurities in silicon instead of quantum dots. Their findings are described in Nature (DOI). Together, this trio of results amplify the promise of semiconductor spin qubits.

Research Report: "Quantum logic with spin qubits crossing the surface code threshold"


Related Links
Delft University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Building a silicon quantum computer chip atom by atom
Melbourne, Australia (SPX) Jan 14, 2022
A University of Melbourne led team have perfected a technique for embedding single atoms in a silicon wafer one-by-one. Their technology offers the potential to make quantum computers using the same methods that have given us cheap and reliable conventional devices containing billions of transistors. "We could 'hear' the electronic click as each atom dropped into one of 10,000 sites in our prototype device. Our vision is to use this technique to build a very, very large-scale quantum device," says ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA Solar Sail Mission to Chase Tiny Asteroid After Artemis I Launch

NASA Offers $1 Million for Innovative Systems to Feed Tomorrow's Astronauts

Russian cosmonauts conduct EVA to complete Nauka Lab Module integration to ISS

Five Space Station Research Results Contributing to Deep Space Exploration

CHIP TECH
NASA prepares final rocket tests for first Artemis moon mission launch

SpaceX ISS freighter splashes down off Florida

Ariane 6 upper stage readies for tests at Europe's Spaceport

Arianespace to launch Microcarb on Vega C

CHIP TECH
Sols 3362-3363: Sedimentologist's Delight

New control technique uses solar panels to reach desired Mars orbit

Hope for present-day Martian groundwater dries up

Consistent asteroid showers rock previous thinking on Mars craters

CHIP TECH
China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CHIP TECH
OneWeb and Hughes to bring orbital broadband service to India

Summit to ignite Europe's bold space ambitions

Advances in Space Transportation Systems Transforming Space Coast

AGIS signs Kleos' data evaluation contract

CHIP TECH
China satellite in close encounter with Russian debris: state media

Future trillion dollar 'space economy' threatened by debris, WVU researcher says

Lion will roam above the planet - KP Labs to release their "king of orbit"

Facebook trumpets massive new supercomputer

CHIP TECH
A planetary dynamical crime scene at 14 Herculis

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

SETI's plan for a sky-monitoring telescope on the moon

Newly-Found Planets On The Edge Of Destruction

CHIP TECH
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.