24/7 Space News
Seeking Water Worlds: NASA's Solid State Quantum Magnetometers
illustration only
Seeking Water Worlds: NASA's Solid State Quantum Magnetometers
by Clarence Oxford
Los Angeles CA (SPX) Jun 05, 2024

"Follow the water!" The solar system contains water in various forms, from the Sun's water vapor to Pluto's ice. Water is essential not only for life but also for its geological properties and potential uses. For instance, lunar and Martian ice could support human exploration, and comets may have brought water to Earth. The icy comets and rings of Saturn illustrate solar system evolution.

Liquid water is crucial for life. Scientists suspect liquid water on several moons of gas and ice giants. The astrobiology community focuses on "Follow the Water" to find life, making subsurface oceans on moons like Jupiter's Europa and Saturn's Enceladus important for future missions.

Conventional remote-sensing instruments face challenges in exploring beneath the thick ice crusts of these moons. While waiting for landers or rovers to drill through the ice, magnetometry offers a method to detect these water bodies. Magnetic fields penetrate solid material and can reveal the interiors of planetary bodies.

Briny water conducts electricity, making a saltwater ocean a planet-sized electric circuit. The rotating magnetic field of a parent planet induces an electric current in this circuit, which disturbs the magnetic field near the ocean world. These disturbances, observable from spacecraft, can indicate liquid water. For instance, NASA's Galileo mission detected distortions in Jupiter's magnetic field near Europa, suggesting a subsurface ocean.

Solid-state quantum magnetometers are promising new instruments for measuring magnetic fields with high sensitivity while being compact and efficient. These instruments offer quantum benefits like self-calibration, which compensates for drifts over time - a crucial feature for long-duration missions. Other advantages include radiation resilience and the ability to withstand extreme temperatures.

These magnetometers use quantum color centers in semiconductors like diamond and silicon carbide. Color centers are defects in the crystal lattice that, when probed on the quantum level, are sensitive to magnetic fields. Changes in quantum spin properties due to varying magnetic fields can be read electrically or optically, revealing the presence of water.

NASA's Jet Propulsion Laboratory is developing two such magnetometers. The SiCMAG (Silicon Carbide Magnetometer), led by Dr. Corey J. Cochrane, reads spin properties electrically. The OPuS-MAGNM (optically pumped solid state quantum magnetometer), led by Dr. Hannes Kraus, uses optics for higher sensitivity. Optically pumped systems use lasers to excite the quantum system, and the response is read with light detectors.

Dr. Kraus stated, "Novel quantum sensors not only enable new science, but also offer the chance to downscale former flagship-class instrumentation to a size and cost allowing flagship-class science on CubeSat-class platforms."

NASA's PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program has funded this research since 2016. Partners include NASA's Glenn Research Center, the University of Iowa, Q-Cat LLC, QuantCAD LLC, Japan's National Institutes for Quantum Science and Technology, and ETH Zurich.

Related Links
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Direct observation of electron transfer in solids achieved
Tokyo, Japan (SPX) Jun 05, 2024
Electron transfer (ET) is a process where an electron moves from one atom or molecule to another, fundamental to electrochemical reactions with applications across various fields. Nanoscale ET, involving electron transfer in the 1-100 nanometer range within solids, is crucial for designing multifunctional materials but remains not fully understood. Nanotubes, with unique cylindrical nanostructures, exhibit diverse ET properties through electron and hole injections, making them ideal for studying n ... read more

Take three for Boeing Starliner crewed launch attempt

Cargo Ship Departs, Two Rockets Near Launch During Busy Day on Station

Russian Progress 88 cargo spacecraft launched to ISS

MDA Space Partners with Starlab Space in Commercial Space Station Venture

Boeing Starliner spacecraft springs more leaks on way to ISS

Boeing's Starliner joins select club of crewed US spaceships

Boeing Starliner's first astronaut mission scheduled to launch Wednesday

YPSat Prepared for Ariane 6 Inaugural Flight

Martian meteorites offer insights into Red Planet's structure

South Korea targets Mars mission with new space centre

Western geologists test instrument for Mars rover mission in search for life

RNA study reveals potential for life in Mars' extreme environments

Shenzhou 18 crew conducts first spacewalk

Zebrafish on China's space station reported to be in good condition

China sends experimental satellite into orbit with Long March 4C rocket

International Support for China's Chang'e-6 Lunar Mission

Starling spacecraft swarm completes primary mission

Sidus Space AI Platform Achieves First Data Transmission from LizzieSat-1

Wallaroo.AI Joins US Space Force SDA TAP Lab Apollo Accelerator Program

Innovative Startups Join South Australia's Space Ecosystem

European Team Validates Flow Models in Zero Gravity

What is the European sovereign cloud?

Australian rare earths firm says data leaked day after Chinese investors blocked

First metal 3D printing performed on ISS

NASA selects industry proposals to advance technologies for Habitable Worlds Observatory

Starless and forever alone: more 'rogue' planets discovered

Astronomers Discover 15 New Exoplanets and Measure Mass of 126 Others

NASA's TESS Finds Intriguing World Sized Between Earth, Venus

New Earth-Based Telescope Images of Jupiter's Moon Io Match Spacecraft Quality

Peering into Pluto's hidden ocean

Probing for Rocks in an Ice Giant's Core

NASA's Juno captures detailed images of Europa's surface

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.