. 24/7 Space News .
TIME AND SPACE
Seeing Black Holes and Beyond
by Staff Writers
Boston MA (SPX) Apr 06, 2017


The ALMA telescope array in Chile. Image courtesy Geoff Crew.

Through an international effort led by MIT Haystack Observatory, the ALMA array in Chile has joined a global network of radio telescopes. A powerful new array of radio telescopes is being deployed for the first time this week, as the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile joins a global network of antennas poised to make some of the highest resolution images that astronomers have ever obtained. The improved level of detail is equivalent to being able to count the stitches on a baseball from 8,000 miles away.

Scientists at MIT and other institutions are using a method called VLBI (Very Long Baseline Interferometry) to link a group of radio telescopes spread across the globe into what is, in effect, a telescope the size of our planet. Although the technique of VLBI is not new, scientists have just recently begun extending it to millimeter wavelengths to achieve a further boost in resolving power. And now, the addition of ALMA to global VLBI arrays is providing an unprecedented leap in VLBI capabilities.

The inclusion of ALMA was recently made possible through the ALMA Phasing Project (APP), an international effort led by the MIT Haystack Observatory in Westford, Massachusetts, and principal investigator Sheperd Doeleman, now at the Harvard-Smithsonian Center for Astrophysics.

Before this project, the ALMA dishes worked with each other to make observations as a single array; now, the APP has achieved the synchronizing, or "phasing," of up to 61 ALMA antennas to function as a single, highly sensitive radio antenna - the most antennas ever phased together.

To achieve this, the APP team developed custom software and installed several new hardware components at ALMA, including a hydrogen maser (a type of ultraprecise atomic clock), a set of very-high-speed data reformatters, and a fiber optic system for transporting an 8 gigabyte-per-second data stream to four ultrafast data recorders (the Haystack-designed Mark6).

The culmination of these efforts is an order-of-magnitude increase in the sensitivity of the world's millimeter VLBI networks, and a dramatic boost in their ability to create detailed images of sources that previously appeared as mere points of light.

"A great many people have worked very hard over the past several years to make this dream a reality," says Geoff Crew, software lead for the APP. "ALMA VLBI is truly going to be transformative for our science."

One of the goals of these new technological innovations is to image a black hole. This month, two international organizations are making observations that will allow scientists to construct such an image for the very first time. And the portrait they're attempting to capture is close to home: Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way.

So much data will be collected during the two observation periods that it's faster to fly them to Haystack than it would be to transmit them electronically. Petabytes of data will be flown from telescopes around the world to Haystack for correlation and processing before images of the black hole can be created.

Correlation, which registers the data from all participating telescopes to account for the different arrival times of the radio waves at each site, is done using a specialized bank of powerful computers. MIT Haystack is one of the few radio science facilities worldwide with the necessary technology and expertise to correlate this amount of data. Additional correlation for these sessions is being done at the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Two observing sessions are taking place. The GMVA (Global mm-VLBI Array) session will observe a variety of sources at a wavelength of 3 millimeters, including Sgr A* and other active galactic nuclei, and the EHT (Event Horizon Telescope) session will observe Sgr A* as well as the supermassive black hole at the center of a nearby galaxy, M87, at a wavelength of 1.3 millimeters. The EHT team includes researchers from MIT's Haystack Observatory and MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), working with the Harvard-Smithsonian Center for Astrophysics and many other organizations.

"Several factors make 1.3 mm the ideal observing wavelength for Sgr A*," according to APP project scientist Vincent Fish. "At longer observing wavelengths, the source would be blurred by free electrons between us and the galactic center, and we wouldn't have enough resolution to see the predicted black hole shadow. At shorter wavelengths, the Earth's atmosphere absorbs most of the signal."

The current observations are the first in a series of groundbreaking studies in VLBI and radio interferometry that will enable dramatic new scientific discoveries. Data from the newly phased ALMA array will also allow better imaging of other distant radio sources via improved data sampling, increased angular resolution, and eventually spectral-line VLBI - observations of emissions from specific elements and molecules.

"Phasing ALMA has opened whole new possibilities for ultra high-resolution science that will go far beyond the study of black holes," says Lynn Matthews, commissioning scientist for the APP. "For example, we expect to be able to make movies of the gas motions around stars that are still in the process of forming and map the outflows that occur from dying stars, both at a level of detail that has never been possible before."

The black hole images from the data gathered this month will take months to prepare; researchers expect to publish the first results in 2018.

The MIT Haystack Observatory team of scientists includes Geoff Crew, Vincent Fish, Michael Hecht, Lynn Matthews, Colin Lonsdale, and Sheperd Doeleman (now at the Harvard-Smithsonian Center for Astrophysics).

The organizations of the APP are: MIT Haystack Observatory (lead organization), Harvard-Smithsonian Center for Astrophysics, Joint ALMA Observatory (Chile), National Radio Astronomy Observatory (NRAO), Max Planck Institute for Radio Astronomy (Germany), University of Concepcion (Chile), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), National Astronomical Observatory of Japan (NAOJ), and Onsala Observatory (Sweden).

ALMA, an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF), and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its member states, by NSF in cooperation with the National Research Council (NRC) of Canada and the National Science Council (NSC) of Taiwan, and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its member states; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning, and operation of ALMA.

TIME AND SPACE
Stars born in winds from supermassive black holes
Munich, Germany (SPX) Mar 30, 2017
Observations using ESO's Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations of stars forming in this kind of extreme environment. The discovery has many consequences for understanding galaxy properties and evolution. The results are published in the jo ... read more

Related Links
Massachusetts Institute Of Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Invests in 22 Visionary Exploration Concepts

Two Russians, one American land back on Earth from ISS

US, Russian Astronauts Prepare for April Crew Swap on Space Station

No Roscosmos plans to send space tourists to ISS before 2020

TIME AND SPACE
Dream Chaser to use Europe's next-generation docking system

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

Europe's largest sounding rocket launched from Esrange

US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

TIME AND SPACE
Russia critcal to ExoMars Project says Italian Space Agency Head

Chile desert combed for clues to life on Mars

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

TIME AND SPACE
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

TIME AND SPACE
Ukraine in talks with ESA to become member

Horizon 2020 European funded DEMOCRITOS project concludes work with some key outcomes

Russian Satellite Builder Reshetnev Fully Switches to Import Substitution

BRICS States Want to Expand Cooperation to Space Science

TIME AND SPACE
DARPA Wades into Murky Multimedia Information Streams to Catch Big Meaning

New research could help speed up the 3-D printing process

Spray-on memory could enable bendable digital storage

European conference on space debris risks and mitigation

TIME AND SPACE
'Smart' cephalopods trade off genome evolution for prolific RNA editing

Atmosphere around super-earth detected

Scientists look for life's building blocks in outer space

Possible Venus twin discovered around dim star

TIME AND SPACE
Hubble takes close-up portrait of Jupiter

When Jovian Light and Dark Collide

Neptune's journey during early planet formation was 'smooth and calm'

Neptune's movement from the inner to the outer solar system was smooth and calm









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.