. 24/7 Space News .
STELLAR CHEMISTRY
Search for first stars uncovers 'dark matter'
by Staff Writers
Tel Aviv, Israel (SPX) Mar 01, 2018

illustration only

A team of astronomers led by Prof. Judd Bowman of Arizona State University unexpectedly stumbled upon "dark matter," the most mysterious building block of outer space, while attempting to detect the earliest stars in the universe through radio wave signals, according to a study published this week in Nature.

The idea that these signals implicate dark matter is based on a second Nature paper published this week, by Prof. Rennan Barkana of Tel Aviv University, which suggests that the signal is proof of interactions between normal matter and dark matter in the early universe. According to Prof. Barkana, the discovery offers the first direct proof that dark matter exists and that it is composed of low-mass particles.

The signal, recorded by a novel radio telescope called EDGES, dates to 180 million years after the Big Bang.

What the universe is made of
"Dark matter is the key to unlocking the mystery of what the universe is made of," says Prof. Barkana, Head of the Department of Astrophysics at TAU's School of Physics and Astronomy. "We know quite a bit about the chemical elements that make up the earth, the sun and other stars, but most of the matter in the universe is invisible and known as 'dark matter.' The existence of dark matter is inferred from its strong gravity, but we have no idea what kind of substance it is. Hence, dark matter remains one of the greatest mysteries in physics.

"To solve it, we must travel back in time. Astronomers can see back in time, since it takes light time to reach us. We see the sun as it was eight minutes ago, while the immensely distant first stars in the universe appear to us on earth as they were billions of years in the past."

Prof. Bowman and colleagues reported the detection of a radio wave signal at a frequency of 78 megahertz. The width of the observed profile is largely consistent with expectations, but they also found it had a larger amplitude (corresponding to deeper absorption) than predicted, indicating that the primordial gas was colder than expected.

Prof. Barkana suggests that the gas cooled through the interaction of hydrogen with cold, dark matter.

"Tuning in" to the early universe
"I realized that this surprising signal indicates the presence of two actors: the first stars, and dark matter," says Prof. Barkana. "The first stars in the universe turned on the radio signal, while the dark matter collided with the ordinary matter and cooled it down. Extra-cold material naturally explains the strong radio signal."

Physicists expected that any such dark matter particles would be heavy, but the discovery indicates low-mass particles. Based on the radio signal, Prof. Barkana argues that the dark-matter particle is no heavier than several proton masses. "This insight alone has the potential to reorient the search for dark matter," says Prof. Barkana.

Once stars formed in the early universe, their light was predicted to have penetrated the primordial hydrogen gas, altering its internal structure. This would cause the hydrogen gas to absorb photons from the cosmic microwave background, at the specific wavelength of 21 cm, imprinting a signature in the radio spectrum that should be observable today at radio frequencies below 200 megahertz. The observation matches this prediction except for the unexpected depth of the absorption.

Prof. Barkana predicts that the dark matter produced a very specific pattern of radio waves that can be detected with a large array of radio antennas. One such array is the SKA, the largest radio telescope in the world, now under construction. "Such an observation with the SKA would confirm that the first stars indeed revealed dark matter," concludes Prof. Barkana.

Research paper


Related Links
American Friends of Tel Aviv University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
UMass Amherst physicists contribute to dark matter detector success
Amherst MA (SPX) Feb 22, 2018
In researchers' quest for evidence of dark matter, physicist Andrea Pocar of the University of Massachusetts Amherst and his students have played an important role in designing and building a key part of the argon-based DarkSide-50 detector located underground in Italy's Gran Sasso National Laboratory. This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elus ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
ISS Expedition 54 crew land safely in Kazakhstan

Florida Poly developing Happy Suit for Astronauts

Shiseido researches stress in closed-off environments to simulate ISS conditions

Cosmonaut, two US astronauts return to Earth from ISS

STELLAR CHEMISTRY
Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

Millenium tapped for certification of Vulcan space launch systems

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

STELLAR CHEMISTRY
Life in world's driest desert seen as sign of potential life on Mars

Mars Odyssey Observes Martian Moons

Atacama Desert study offers glimpse of what life on Mars could look like

Dormant desert life hints at possibilities on Mars

STELLAR CHEMISTRY
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

STELLAR CHEMISTRY
Lockheed Martin Completes Foundation for Satellite Factory of the Future

Iridium Certus readies for takeoff with aviation service providers

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

STELLAR CHEMISTRY
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

STELLAR CHEMISTRY
Alien life in our Solar System? Study hints at Saturn's moon

Model based on hydrothermal sources evaluate possibility of life Jupiter's icy moon

When do aging brown dwarfs sweep the clouds away?

Proxima Centauri's no good, very bad day

STELLAR CHEMISTRY
Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.