. 24/7 Space News .
INTERNET SPACE
Scientists propose data encoding method for the 6G standard
by Staff Writers
Saint Petersburg, Russia (SPX) Jun 15, 2020

illustration only

Researchers around the world are working on ways to transfer data in the terahertz (THz) range, which would make it possible to send and receive information much faster than what is allowed by today's technology.

But the issue they're facing is that it is much more difficult to encode data in the THz range than in the GHz range, which is currently used by 5G tech. A group of scientists from ITMO University have demonstrated the possibility of modifying terahertz pulses in order to use them for data transmission. An article on this subject was published in Scientific Reports.

Telecommunications companies in advanced economies are beginning to adopt the new 5G standard, which will endow users with previously-unseen wireless data transfer speeds. Meanwhile, as the world makes its first steps towards this new generation of data networks, scientists are already at work on its successor.

"We're talking about 6G technologies," says Egor Oparin, a staff member of ITMO University's Laboratory of Femtosecond Optics and Femtotechnologies. "They will increase data transfer speeds by anywhere from 100 to 1,000 times, but implementing them will require us to switch to the terahertz range."

Today, a technology for simultaneous transfer of multiple data channels over a single physical channel has been successfully implemented in the infrared (IR) range. This technology is based on the interaction between two broadband IR pulses with a bandwidth measured in tens of nanometers. In the terahertz range, the bandwidth of such pulses would be much larger - and so, in turn, would be their capacity for data transfer.

But before we begin to consider 6G technology, scientists and engineers will need to find solutions to numerous crucial issues. One such issue has to do with ensuring the interference of two pulses, which would result in a so-called pulse train or frequency comb used to encode data.

"In the terahertz range, pulses tend to contain a small number of field oscillations; literally one or two per pulse," says Egor Oparin. "They are very short and look like thin peaks on a graph. It is quite challenging to achieve interference between such pulses, as they are difficult to overlap."

A team of scientists at ITMO University has suggested extending the pulse in time so that it would last several times longer but still be measured in picoseconds. In this case, the different frequencies within a pulse would not occur simultaneously, but follow one another in succession.

In scientific terms, this is referred to as chirping or linear-frequency modulation. However, it comes with another challenge: although chirping technologies are quite well-developed in regards to the infrared range, there is a lack of research on the technique's use in the terahertz range.

"We've turned to the technologies used in the microwave range," says Egor Oparin, who is a co-author of the paper.

"They actively employ metal waveguides, which tend to have high dispersion, meaning that different emission frequencies propagate at different speeds there. But in the microwave range, these waveguides are used in single mode, or, to put it differently, the field is distributed in one configuration, in a specific, narrow frequency band, and, as a rule, in one wavelength. We took a similar waveguide of a size suitable for the terahertz range and passed a broadband signal through it so that it would propagate in different configurations; because of this, the pulse became longer in duration, changing from two to about seven picoseconds, which is three and a half times more. This became our solution."

By using a waveguide, researchers have been able to increase the length of the pulses to a duration that is necessary from a theoretical standpoint. This made it possible to achieve interference between two chirped pulses that together create a pulse train. "What's great about this pulse train is that it exhibits a dependence between a pulse's structure in time and the spectrum," says the scientist.

"So we have temporal form, or simply put field oscillations in time, and spectral form, which represents those oscillations in the frequency domain. Let's say we've got three peaks, three substructures in the temporal form, and three corresponding substructures in the spectral form. By using a special filter to remove parts of the spectral form, we can "blink" in the temporal form and the other way around. This could be the basis for data encoding in the terahertz band."

Research paper


Related Links
ITMO University
Satellite-based Internet technologies


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


INTERNET SPACE
Snapchat to deliver breaking news, adds wellness features
San Francisco (AFP) June 11, 2020
Snapchat announced Thursday it would deliver breaking news as youth-focused social network unveiled a series of new features focused on information, entertainment and wellness. The California-based unit of parent Snap Inc. introduced a Happening Now service intended to quickly deliver news to its users. The list of partners for Happening Now includes The Washington Post, NBC News, ESPN, E! News, and BuzzFeed News. Snap says that many of its users already get news on Snapchat and that the new ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Airbnb sees 'bounce' in travel, aims to promote local tourism

ARISS established dedicated US Organization to support amateur ISS communications

From space, Russian cosmonauts fight chess grandmaster to a draw

CES global gadget fest on track despite pandemic

INTERNET SPACE
New Zealand rocket launch postponed due to wind gusts

Agency seeks hypersonic missile defense system proposals

China plans to develop new solid-fueled carrier rocket

ULA on track to launch new Vulcan rocket in early 2021

INTERNET SPACE
Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

Scientist captures new images of Martian moon Phobos to help determine its origins

Martian moon orbit hints at ancient ring

INTERNET SPACE
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

INTERNET SPACE
York Space Systems and LatConnect 60 to deploy a small satellite constellation

Broadband players lobby for uninterrupted foreign funds in India's satellite missions

Momentus and OrbAstro announce service agreement for 3U in-orbit demonstration

Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

INTERNET SPACE
A breakthrough in developing multi-watt terahertz lasers

Freshly printed magnets using Metal 3D laser printing

Lab makes 4D printing more practical

Could we run out of sand? Scientists adjust how grains are measured

INTERNET SPACE
Presence of airborne dust could signify increased habitability of distant planets

Ancient asteroid impacts created the ingredients of life on Earth and Mars

Mirror image of Earth and Sun

New experiments show complex astrochemistry on thin ice covering dust grains

INTERNET SPACE
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.