. | . |
Scientists measure pulse of CO2 emissions during spring thaw in the Arctic by Staff Writers Berkeley CA (SPX) Dec 16, 2016
When the frozen Arctic tundra starts to thaw around June of each year, the snow melting and the ground softening, the soil may release a large pulse of greenhouse gases, namely, carbon dioxide and methane. Little has been known about such releases. Now scientists at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory, in collaboration with a team of other scientists taking measurements both in the field and in the lab, have quantified the scale of such releases and explained the underlying mechanisms for the phenomenon. Their study was based on a spring pulse in northern Alaska that they documented in 2014 that included CO2 emissions equivalent to 46 percent of the net CO2 that is absorbed in the summer months and methane emissions that added 6 percent to summer fluxes. What's more, recent climate trends may make such emissions more frequent, the scientists conclude. "We can see the effects of climate change happening more rapidly in the Arctic than in any other part of world," said Berkeley Lab scientist Naama Raz-Yaseef. "So we need to understand the processes that are occurring and what to expect in the future. The amount of CO2 and methane (CH4) in the atmosphere determines the greenhouse effect--so we need to know more about these sources." Their study was recently published in the journal Geophysical Research Letters in a paper titled, "Large CO2 and CH4 Emissions from Polygonal Tundra During Spring Thaw in Northern Alaska." Raz-Yaseef, an ecohydrologist, was the lead author. Co-authors were Berkeley Lab researchers Margaret Torn, Yuxin Wu, and Tim Kneafsey; Dave Billesbach of the University of Nebraska; Anna Liljedahl and Vladimir Romanovsky of the University of Alaska; David Cook of Argonne National Laboratory; and Stan Wullschleger of Oak Ridge National Laboratory. The study was a project of DOE's Next-Generation Ecosystem Experiment (NGEE-Arctic), which seeks to gain a predictive understanding of the Arctic terrestrial ecosystem's feedback to climate. The team used two towers 4 meters high to collect gas flux readings. The towers are located about 5 km apart near Barrow, Alaska, the northernmost town in the U.S, one tower operated by NGEE and the other by DOE's Atmospheric Radiation Measurement (ARM) Climate Research Facility. "Typically we just measure what happens during summer," Raz-Yaseef said. "We assume nothing happens during winter because it's frozen, so there's no biological activity. But in 2014 we measured a big flux of carbon and methane emitted from the ground, at the very beginning of thaw and snowmelt. At first we didn't know if it was real or a measurement error. Then we confirmed it with another tower 5 km away (the ARM tower), which measured a very similar flux of the same size during the same period." That spring they measured a total of three pulses, the longest lasting five days. These findings are important in understanding the carbon balance of ecosystems in the Arctic. So far, the Arctic is considered a carbon sink, meaning it absorbs more CO2 than it emits on an annual basis, thanks mainly to the vegetation that grows in the summer. (Oceans and forests are far larger carbon sinks.) "Given our findings, the Arctic is an even smaller carbon sink than we thought since during some years nearly half of the summer uptake of CO2 is offset with these spring emissions," Raz-Yaseef said.
Gases trapped in the middle layer "For about a month after the surface freezes, the middle layer is still active," Raz-Yaseef explained. "The temperature is still around 0 (Celsius), so microbial activity continues to take place, producing carbon and methane, but it's trapped beneath the surface ice. It can't be emitted, so it's stored throughout the winter." When the ice cap thaws in spring, the gases escape to the atmosphere. The scientists confirmed these observations in several ways. First, they measured soil temperatures every 10 cm down through the permafrost 1.5 meters below ground every 5 minutes year-round. Second, they extracted large, frozen soil cores that were transported to the laboratory for experiments. "(Berkeley Lab scientist) Yuxin Wu thawed a core under controlled conditions, but just like in nature," Raz-Yaseef said. "Just when the surface ice melted in the lab, he measured a large flux of carbon and methane. This is formed from gases trapped in the soil over winter." Separately, Berkeley Lab scientist Timothy Kneafsey took CT scans of hundreds of frozen cores and found gas-rich channels and pockets near the surface, which the scientists posited could serve as accumulation zones and pathways for gas flow.
Spring pulses not annual but may become more frequent "The process is more likely to occur when there are events of rain on ice," Raz-Yaseef said. "When it thaws and freezes repeatedly, that produces cracks in the frozen soil, and through these cracks the gas can be emitted." During warmer years, the scientists expect the spring pulses to be more frequent. "We expect there will be more gas built up due to longer and warmer fall seasons and more frequent pulse events due to more rain on ice in the spring," Raz-Yaseef said. One thing that's for sure is the scientists now know not to ignore gas emissions in early spring. "Now we'll put the towers up much, much earlier, just in case there's another event, we'll be sure to catch it," Raz-Yaseef said. "It's one of those things, once you're aware of it, you open your eyes and looks for it."
Related Links Lawrence Berkeley National Laboratory Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |