Subscribe free to our newsletters via your
. 24/7 Space News .

Scientists generate first map of clouds on an exoplanet
by Jennifer Chu for MIT News Office
Boston MA (SPX) Oct 08, 2013

Kepler 7b (left), which is 1.5 times the radius of Jupiter (right), is the first exoplanet to have its clouds mapped. The cloud map was produced using data from NASA's Kepler and Spitzer space telescopes. Image: NASA/JPL-Caltech/MIT.

On the exoplanet Kepler 7b, the weather is highly predictable, an international team of scientists has found: On any given day, the exoplanet, which orbits a star nearly 1,000 light-years from Earth, is heavily overcast on one side, while the other side likely enjoys clear, cloudless weather.

The new work, by researchers from MIT and other institutions, is the first mapping of the distribution of clouds on an exoplanet. The scientists observed that one of Kepler 7b's hemispheres is blanketed with a dense layer of clouds - far denser than any found on Earth, and so thick that it reflects a significant portion of its host star's incoming light.

This shield of clouds makes the planet cooler than others of its type, creating an atmosphere that encourages further cloud formation.

The team generated a low-resolution map of the planet's clouds using optical data from NASA's Kepler Space Telescope. The researchers also analyzed the light originating from Kepler 7b at various phases of its orbit, finding that much of the planet's reflectivity is due to the presence of clouds, and that this cloud cover is unevenly distributed.

"There are a lot of different chemical processes that could take place to create this inhomogenous cloud," says Nikole Lewis, a postdoc in the Department of Earth, Atmospheric and Planetary Sciences (EAPS). "Kepler 7b is an important test-bed for the way circulation and cloud distribution work together in exoplanet atmospheres."

Lewis and her colleagues have published their results in Astrophysical Journal Letters. Co-authors from MIT include postdocs Brice-Olivier Demory and Andras Zsom, graduate student Julien de Wit, and Sara Seager, the Class of 1941 Professor of Physics and Planetary Science.

Mapping clouds, slice by slice
Kepler 7b was among the first exoplanets identified by the Kepler spacecraft, which has since confirmed more than 130 planets outside our solar system. The planet is considered a "hot Jupiter," as it is composed mostly of gas, and is about 50 percent larger than Jupiter (although it has only about half the mass of that planet).

In 2011, Demory analyzed Kepler 7b's albedo, or reflectivity, and found that it is unusually bright for an exoplanet, reflecting about 50 percent of light from its star. At the time, the cause of such reflectivity was a mystery, but the new analysis, which makes use of Spitzer's infrared observations, reveals that much of it is due to the presence of clouds in Kepler 7b's atmosphere.

To reach this conclusion, the researchers looked through three years' worth of Kepler light data, combined with recent thermal observations from the planet, taken with NASA's Spitzer Space Telescope.

Combining both datasets, the researchers compared the amount of light and heat given off by the planet at every phase of its orbit. The planet is tidally locked, presenting the same face to its star at all times. From Earth, the planet appears to wax and wane as it circles its star, much like the phases of our moon.

"You can reconstruct the information in terms of brightness, slice by slice," de Wit says. "This is really fantastic, because though the planet is extremely small, there are techniques for getting spatial information about the planet."

Clouds rolling in
The researchers analyzed Kepler 7b's phase curves - measurements of light from the planet at every orbital phase, taken by the Kepler spacecraft. To determine whether these emissions stem from light or heat, the team looked at phase curves in the infrared, provided by Spitzer. They detected very little thermal energy emitted by the planet - a confirmation that most of Kepler 7b's emissions are indeed reflected light.

But that finding wasn't a sure indication of clouds on the planet. The group reasoned that the reflected light could instead be caused by a phenomenon called Rayleigh scattering, in which light from Kepler 7b's star uniformly scatters around the planet, reflected by atoms or molecules much smaller than those in clouds - much as Earth's atmospheric gases scatter sunlight, creating a blue sky.

To distinguish between the two possibilities, the group looked again at Kepler 7b's phase curves. If the planet's reflectivity is due to uniform Rayleigh scattering, its light emissions should peak at the point at which the planet is behind the star, displaying its full dayside to an observer. But instead, the researchers found that the planet's brightness peaked slightly after it had passed behind the star, indicating that its reflectivity is not uniform - a sign that the reflectivity was due to an uneven distribution of clouds.

It's unclear exactly what conditions may give rise to such a stark contrast in cloud cover; Lewis says that investigating the possible causes will be a research focus in the future.

"Kepler 7b happens to be in this temperature range where you can form condensates high up in the atmosphere," Lewis observes. "Compared to Jupiter, it has a lower gravity that allows you to keep particles lofted much more readily. So Kepler 7b is in this happy regime that allows the atmosphere to create this dense cloud deck. It will keep us busy for the next several years."

This research was funded by NASA. Zsom was supported by the German Science Foundation, and de Wit received support from the Belgian American Educational Foundation and Wallonie-Bruxelles International. Lewis is supported by a Sagan fellowship.


Related Links
Massachusetts Institute of Technology
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

NASA Space Telescopes Find Patchy Clouds On Exotic World
Pasadena CA (JPL) Oct 07, 2013
Astronomers using data from NASA's Kepler and Spitzer space telescopes have created the first cloud map of a planet beyond our solar system, a sizzling, Jupiter-like world known as Kepler-7b. The planet is marked by high clouds in the west and clear skies in the east. Previous studies from Spitzer have resulted in temperature maps of planets orbiting other stars, but this is the first look ... read more

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

Spacecraft snaps dramatic images of giant scar on the surface of Mars

NAU researcher's closer look at Mars reveals new type of impact crater

ESA's test rover begins exploring Atacama Desert

Mars Hand Lens Imager Sends Ultra High-Res Photo From Mars

NASA ban on Chinese scientists 'inaccurate': lawmaker

Naval Institute History Conference: From Mercury to the Shuttle

Samsung to break ground at US research center

Non-Orbiting Space Junk

China criticises US space agency over 'discrimination'

NASA ban on Chinese scientists 'inaccurate': lawmaker

What's Next, Tiangong?

Onward and upward as China marks 10 years of manned spaceflight

Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

First CASIS Funded Payloads Berthed to the ISS

Unmanned cargo ship docks with orbiting Space Station

New space crew joins ISS on Olympic torch mission

Sunshield preparations bring Gaia closer to deep-space Soyuz launch

SES-8 Arrives At Cape Canaveral For SpaceX Falcon 9 Launch

Spaceport Colorado and S3 Sign Memorandum of Understanding

Milky Way-mapping Gaia receives its sunshield

Space 'graveyard' reveals bits of an Earth-like planet

Scientists generate first map of clouds on an exoplanet

Diamond 'super-earth' may not be quite as precious

Lonely planet without a star discovered wandering our galaxy

Ultrasound system gives virtual feeling of objects in mid-air

Himawari and Mitsubishi Electric Complete Facilities For Weather Satellite Ops

Disney Research develops algorithm for rendering 3-D tactile features on touch surfaces

World's Largest Solar Sail, Sunjammer, Completes Test

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement