. 24/7 Space News .
CHIP TECH
Scientists discover new class of semiconducting entropy-stabilized materials
by Staff Writers
Ann Arbor MI (SPX) Aug 03, 2020

Crystal structure of GeSnPbSSeTe, a semiconducting entropy-stabilized chalcogenide alloy. The yellow atoms are cations (Ge, Sn, Pb) and the blue atoms are anions (S, Se, Te). The difference in lightness corresponds to different species of the anions and cations. The configurational entropy from the disorder of both the anion and the cation sublattices stabilizes the single-phase rocksalt solid solution, as demonstrated from first-principles calculations as well as experimental synthesis and characterization.

Semiconductors are important materials in numerous functional applications such as digital and analog electronics, solar cells, LEDs, and lasers. Semiconducting alloys are particularly useful for these applications since their properties can be engineered by tuning the mixing ratio or the alloy ingredients. However, the synthesis of multicomponent semiconductor alloys has been a big challenge due to thermodynamic phase segregation of the alloy into separate phases.

Recently, University of Michigan researchers Emmanouil (Manos) Kioupakis and Pierre F. P. Poudeu, both in the Materials Science and Engineering Department, utilized entropy to stabilize a new class of semiconducting materials, based on GeSnPbSSeTe high-entropy chalcogenide alloys, a discovery that paves the way for wider adoption of entropy-stabilized semiconductors in functional applications. Their article, "Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping" was recently published in the journal Chemistry of Materials.

Entropy, a thermodynamic quantity that quantifies the degree of disorder in a material, has been exploited to synthesize a vast array of novel materials by mixing eachcomponent in an equimolar fashion, from high-entropy metallic alloys to entropy-stabilized ceramics. Despite having a large enthalpy of mixing, these materials can surprisingly crystalize in a single crystal structure, enabled by the large configurational entropy in the lattice.

Kioupakis and Poudeu hypothesized that this principle of entropy stabilization can be applied to overcome the synthesis challenges of semiconducting alloys that prefer to segregation into thermodynamically more stable compounds. They tested their hypothesis on a 6-component II-VI chalcogenide alloy derived from the PbTe structure by mixing Ge, Sn, and Pb on the cation site, and S, Se, and Te on the anion site.

Using high throughput first-principles calculations, Kioupakis uncovered the complex interplay between the enthalpy and entropy in GeSnPbSSeTe high-entropy chalcogenide alloys. He found that the large configurational entropy from both anion and cation sublattices stabilizes the alloys into single-phase rocksalt solid solutions at the growth temperature.

Despite being metastable at room temperature, these solid solutions can be preserved by fast cooling under ambient conditions. Poudeu later verified the theory predictions by synthesizing the equimolar composition (Ge1/3Sn1/3Pb1/3S1/3Se1/3Te1/3) by a two-step solid-state reaction followed by fast quenching in liquid nitrogen.

The synthesized power showed well-defined XRD patterns corresponding to a pure rocksalt structure. Furthermore, they observed reversible phase transition between single-phase solid solution and multiple-phase segregation from DSC analysis and temperature dependent XRD, which is a key feature of entropy stabilization.

What makes high-entropy chalcogenide intriguing is their functional properties. Previously discovered high-entropy materials are either conducting metals or insulating ceramics, with a clear dearth in the semiconducting regime. Kioupakis and Poudeu found that. the equimolar GeSnPbSSeTe is an ambipolarly dopable semiconductor, with evidence from a calculated band gap of 0.86 eV and sign reversal of the measured Seebeck coefficient upon p-type doping with Na acceptors and n-type doping with Bi donors.

The alloy also exhibits an ultralow thermal conductivity that is nearly independent of temperature. These fascinating functional properties make GeSnPbSSeTe a promising new material to be deployed in electronic, optoelectronic, photovoltaic, and thermoelectric devices.

Entropy stabilization is a general and powerful method to realize a vast array of materials compositions. The discovery of entropy stabilization in semiconducting chalcogenide alloys by the team at UM is only the tip of the iceberg that can pave the way for novel functional applications of entropy-stabilized materials.

Research Report: "Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping"


Related Links
University Of Michigan College Of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Share surge propels Taiwan chip giant TSMC into top ten
Taipei (AFP) July 28, 2020
Taiwanese chip giant TSMC on Tuesday briefly became the world's tenth largest company thanks to a two-day surge in its stock price that has propelled the island's exchange to a record high. Taiwan Semiconductor Manufacturing Company, the world's largest contract microchip maker, produces the processors that provide the computing muscle for everything from iPhones, laptops and games consoles to servers and critical internet infrastructure. The company's worth reached some $410 billion on Tuesday ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Top 10 things to know for NASA's SpaceX Demo-2 return

Russian Progress resupply cargo spacecraft docks with ISS

Duckweed is an incredible, radiation-fighting astronaut food

Spacewalk on Tuesday will conclude space station power upgrade

CHIP TECH
China's fastest rocket carries deep space dream

Aerojet Rocketdyne achieves another milestone on DARPA Opfires Program

Arianespace to launch three satellites towards Geostationary Orbit on July 28

Northrop Grumman delivers three GEM 63 rocket motors for Atlas V

CHIP TECH
NASA's Perseverance Rover will carry first spacesuit materials to Mars

Aerojet Rocketdyne will help rocket Perseverance to Mars

NYUAD astrophysicist investigates the possibility of life below the surface of Mars

New method determines planetary regolith thermal conductivity

CHIP TECH
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

CHIP TECH
ESA's Thomas Pesquet to be first European to ride a Dragon to Space Station

British defense ministry, Airbus finalize $628.5M contract for Skynet upgrade

Airbus expands its SpaceDataHighway with second satellite

China launches new commercial telecommunication satellite

CHIP TECH
Microsoft sees growth amid pandemic computing demands

Hole in none: how screen golf got serious in South Korea

Coronavirus boon for Poland's vibrant gaming sector

Loft Orbital selects LeoStella to supply satellites for Space Infrastructure-as-a-Service

CHIP TECH
Exoplanet rediscovery is step toward finding habitable planets

First ever image of a multi-planet system around a sun-like star captured by ESO telescope

Could mini-Neptunes be irradiated ocean planets

Astronomers track down 'lost' worlds spotted but unconfirmed by TESS survey

CHIP TECH
NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.