. 24/7 Space News .
TIME AND SPACE
Scientists at CERN successfully laser-cool antimatter for the first time
by Staff Writers
Swansea UK (SPX) Apr 01, 2021

Trapped anti-atoms being cooled

Swansea University physicists, as leading members of the ALPHA collaboration at CERN, have demonstrated laser cooling of antihydrogen atoms for the first time. The groundbreaking achievement produces colder antimatter than ever before and enables an entirely new class of experiments, helping scientists learn more about antimatter in future.

In a paper published in Nature, the collaboration reports that the temperature of antihydrogen atoms trapped inside a magnetic bottle is reduced when the atoms scatter light from an ultraviolet laser beam, slowing the atoms down and reducing the space they occupy in the bottle - both vital aspects of future more detailed studies of the properties of antimatter.

In addition to showing that the energy of the antihydrogen atoms was decreased, the physicists also found a reduction in the range of wavelengths that the cold atoms can absorb or emit light on, so the spectral line (or colour band) is narrowed due to the reduced motion.

This latter effect is of particular interest, as it will allow a more precise determination of the spectrum which in turn reveals the internal structure of the antihydrogen atoms.

Antimatter is a necessity in the most successful quantum mechanical models of particle physics. It became available in the laboratory nearly a century ago with the discovery of the positively charged positron, the antimatter counterpart of the negatively charged electron.

When matter and antimatter come together annihilation occurs; a striking effect wherein the original particles disappear. Annihilation can be observed in the laboratory and is even used in medical diagnostic techniques such as positron emission tomography (PET) scans. However, antimatter presents a conundrum. An equal amount of antimatter and matter formed in the Big Bang, but this symmetry is not preserved today as antimatter seems to be virtually absent from the visible universe.

Swansea University's Professor Niels Madsen, who was responsible for the experimental run, said: "Since there is no antihydrogen around, we have to make it in the lab at CERN. It's a remarkable feat that we can now also laser-cool antihydrogen and make a very precise spectroscopic measurement, all in less than a single day. Only two years ago, the spectroscopy alone would take ten weeks. Our goal is to investigate if the properties of our antihydrogen match those of ordinary hydrogen as expected by symmetry. A difference, however small, could help explain the some of the deep questions surrounding antimatter."

Professor Eriksson, who was responsible for the spectroscopy lasers involved in the study, said: "This spectacular result takes antihydrogen research to the next level, as the improved precision that laser cooling brings puts us in contention with experiments on normal matter. This is a tall order since the spectrum of hydrogen that we compare with has been measured with a staggering precision of fifteen digits. We are already upgrading our experiment to meet the challenge!"

Research paper


Related Links
Swansea University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New results challenge leading theory in physics
Zurich, Switzerland (SPX) Mar 24, 2021
When so-called beauty quarks are produced during the collision of high-energy proton beams in the Large Hadron Collider - the particle accelerator at CERN in Geneva - they decay almost immediately on the spot. Researchers of the Large Hadron Collider beauty experiment (LHCb) reconstruct the properties of the composite particles based on their decay products. According to the established laws of particle physics - the so-called Standard Model - it is expected that beauty quarks decay with the same ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Nevada company plans space station with inflatable pods

Deep-sea exploration breakthrough to guide future space exploration missions

Virgin Galactic and Land Rover announce global partnership extension as new spaceship is revealed

Russian Progress MS-14 spacecraft sets new flight duration record

TIME AND SPACE
Florida rocket company rebrands, plans bigger rocket

SpaceX Starship rocket test ends in another failure: Musk

Gilmour Space to launch Fleet satellites in 2023

SpaceX introduces final members of all-civilian Inspiration4 crew

TIME AND SPACE
InSight detects two sizable quakes on Mars

Rover drops off Mars Helicopter Ingenuity for first flight on Mars

Sensors collect crucial data on Mars landings with arrival of Perseverance

NASA's Ingenuity helicopter dropped on Mars' surface ahead of flight

TIME AND SPACE
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

TIME AND SPACE
BlackSky's newest satellite delivers first insights within 24 hours

Nine global space startups to join Australia's first space dedicated incubator program

New study finds satellites contribute significant light pollution to night skies

OneWeb welcomes TrustComm as a DoD Distribution Partner

TIME AND SPACE
ESA invites ideas to open up in-orbit servicing market

Robot security dogs start guarding Tyndall Air Force Base

Tesat Technology chosen for US Govt Program

Microsoft wins $22 bn US army contract for augmented reality gear

TIME AND SPACE
Roman Space Telescope predicted to find 100,000 transiting planets

How asteroid dust helped us prove life's raw ingredients can evolve in outer space

Photosynthesis could be as old as life itself

Pandora Mission Would Expand NASA's Capabilities in Probing Alien Worlds

TIME AND SPACE
First X-rays from Uranus Discovered

NASA's Europa Clipper builds hardware, moves toward assembly

SwRI scientists discover a new auroral feature on Jupiter

The PI's Perspective: Far From Home









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.