. 24/7 Space News .
EARLY EARTH
Rochester researchers unlock clues to a dramatic chapter of Earth's geological history
by Staff Writers
Rochester NY (SPX) Jun 17, 2020

Polished surfaces of glacial rock collected in southwest Virginia helped researchers very precisely date and determine the planet's climate before Snowball Earth events.

Imagine Earth completely covered in ice. While it's hard to picture all of today's oceans and land masses obscured with glaciers, such an ice-covered version of the planet was not so far-fetched millions of years ago.

Lasting from approximately 1,000 to 540 million years ago, the dramatic chapter is an important part of Earth's 4.5-billion-year history. Known as the Neoproterozoic Era, the period of severe glaciation was a time when multicellular organisms were beginning to diversify and spread across the planet.

Many researchers posit that ice may have covered every surface of the planet, stretching from the poles all the way to the hot tropics of the equator - a hypothesis known as "Snowball Earth."

How was it possible there was global ice - even in the warmest areas of Earth?

Researchers from the University of Rochester are shedding new light on that question. By analyzing mineral data left by glaciers before the onset of the Neoproterozoic Era, Scott MacLennan, a postdoctoral research associate in the lab of Mauricio Ibanez-Mejia, an assistant professor in the Department of Earth and Environmental Sciences, present the first geological evidence that Earth may have had a cool climate before Snowball Earth.

The study, published in Science Advances, provides important information about a period of the planet's history that paved the way for the development of complex life on Earth.

"This is a fascinating period, as these dramatic environmental changes happened right as the first true animals were beginning to appear and evolve on Earth," Ibanez-Mejia says.

What Caused Snowball Earth?
A critical aspect of understanding a period of planetwide glaciation is determining what the climate was like before Snowball Earth. Computer models indicate that a cool global climate was necessary in order to initiate a Snowball Earth state, but such a state has not been confirmed by geological evidence. Instead, geological evidence has previously suggested that Earth had a warm and ice-free climate immediately prior to the Neoproterozoic glaciation.

While scientists don't know the exact mechanisms that may have caused Snowball Earth, they suspect that whatever they were, the mechanisms involved a massive decrease in atmospheric carbon dioxide concentrations.

There are several scenarios in which the atmospheric carbon dioxide may have decreased. They include an increase in biomass in the oceans, which may have taken carbon dioxide out of the atmosphere and turned it into organic matter, or an increase in the weathering of the continental crust, which also takes up carbon dioxide.

In order to determine whether these scenarios are feasible, however, it's critical to know more about Earth's climate before the massive glaciation events started.

"If the Earth was very hot, it would mean the ocean was storing a lot of heat, which would take a lot of time to get rid of in order to create a Snowball Earth," MacLennan says.

Unlocking Climate Clues In Rocks
Scientists can determine Earth's climate at points in time by studying rocks that were deposited at different times throughout Earth's history. MacLennan and his colleagues used zircon dating methods to very precisely date glacial rocks found in modern-day Virginia.

Paleomagnetic data, which allows researchers to determine where the continents were located thousands and even millions of years ago, have established that Virginia was located in the middle of a supercontinent within the tropics while the glacial rocks were being deposited. The supercontinent later broke up into smaller parts.

The researchers discovered that the glacial rocks were actually deposited 30 million years before the first Snowball Earth. The observation was surprising because they had expected the glacial rocks to be related to the Snowball Earth event. Instead, the discovery indicates that there were glaciers in the tropics near the equator - albeit at potentially high altitudes - even before Snowball Earth.

"The planet always gets colder away from the tropics and toward the poles because Earth receives most of its incoming sunlight at the equator," MacLennan says. "If there are glaciers in the tropics, the rest of the planet must have also been very cold. This means that our previous vision of a hot, humid world before the Snowball Earth is probably incorrect."

The potential trigger mechanism for the massive global cooling therefore may not have been as extreme as some researchers believe; the planet didn't immediately turn from a warm state to a frozen state but instead appears to have experienced a more gradual cool-off into a Snowball Earth state.

The Survival Of Life In The Neoproterozoic Era
This research raises interesting questions about what Earth was really like 800 to 700 million years ago, before Snowball Earth events, during a time when interesting biological innovations were taking place as multicellular organisms were beginning to diversify.

"There have been a lot of questions about how multi- and single-cellular life forms would survive the Snowball Earths, especially if there was a rapid transition from a hot greenhouse world," MacLennan says.

"Our estimates for pre-Snowball climate imply the planet was probably colder than the modern world, which means there may have been ample cold environments at high latitude and altitude where organisms could have adapted to these cold conditions."

Research paper


Related Links
University Of Rochester
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
New discovery of giant bipedal crocodile footprints in the cretaceous of Korea
Denver CA (SPX) Jun 15, 2020
A new study released in Scientific Reports announced the surprising discovery of abundant, well-preserved 110-120-million-year-old footprints, belonging to a large bipedal ancestor of modern-day crocodiles from the Lower Cretaceous Jinju Formation of South Korea. The team of palaeontologist trackers that made the discovery includes researchers from Korea, Australia, and University of Colorado Denver professor, Martin Lockley. While palaeontologists knew that some crocodiles from the "age of dinosa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Airbnb sees 'bounce' in travel, aims to promote local tourism

ARISS established dedicated US Organization to support amateur ISS communications

From space, Russian cosmonauts fight chess grandmaster to a draw

CES global gadget fest on track despite pandemic

EARLY EARTH
New Zealand rocket launch postponed due to wind gusts

Kids are building rockets from their bedrooms

Winds scrub Rocket Lab launch from New Zealand

Agency seeks hypersonic missile defense system proposals

EARLY EARTH
First Arab mission to Mars designed to inspire youth

Three new views of Mars' moon Phobos

Perseverance Mars Rover's extraordinary sample-gathering system

Scientist captures new images of Martian moon Phobos to help determine its origins

EARLY EARTH
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

EARLY EARTH
York Space Systems and LatConnect 60 to deploy a small satellite constellation

Broadband players lobby for uninterrupted foreign funds in India's satellite missions

Momentus and OrbAstro announce service agreement for 3U in-orbit demonstration

Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

EARLY EARTH
How magnetic fields and 3D printers will create the pills of tomorrow

A breakthrough in developing multi-watt terahertz lasers

Freshly printed magnets using Metal 3D laser printing

Could we run out of sand? Scientists adjust how grains are measured

EARLY EARTH
Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

Presence of airborne dust could signify increased habitability of distant planets

Mysterious interstellar visitor was probably a 'dark hydrogen iceberg,' not aliens

EARLY EARTH
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.