. 24/7 Space News .
ICE WORLD
Rising global temperatures turn northern permafrost region into significant carbon source
by Staff Writers
Lemont IL (SPX) Jan 24, 2020

David Cook, a recently retired Argonne meteorologist, performs maintenance on an eddy correlation flux measurement tower, operated by the DOE-funded Atmospheric Radiation Measurement (ARM) program, in Utqiagvik, Alaska. The tower exemplifies one of several types of instrumentation used to generate the data in this study. (Image by Argonne National Laboratory/Ryan Sullivan.)

Permafrost, the perennially frozen subsoil in Earth's northernmost regions, has been collecting and storing plant and animal matter since long before the last Ice Age. The decomposition of some of this organic matter naturally releases carbon dioxide (CO2) into the atmosphere year-round, where it is absorbed by plant growth during the warmer months.

This region, called the northern permafrost region, is difficult to study, and experiments there are few and far between compared with those in warmer and less remote locations.

However, a new synthesis that incorporates datasets gathered from more than 100 Arctic study sites by dozens of institutions, including the U.S. Department of Energy's (DOE) Argonne National Laboratory, suggests that as global temperatures rise, the decomposition of organic matter in permafrost soil during the winter months can be substantially greater than previously thought. The new numbers indicate a release of CO2 that far exceeds the corresponding summer uptake.

Even more importantly, when modeling the carbon balance using the large collection of data, the scientists found that the CO2 released by permafrost soil in the winter could increase 41 percent by 2100 if human-caused greenhouse gas emissions continue at their current rate.

The study, published in Nature Climate Change this past October, is the most comprehensive study on this phenomenon to date. It highlights the need for more research on the permafrost region's net CO2 emissions, and it demonstrates the significant impact these emissions could have on the greenhouse effect and global warming.

The study brings together a combination of in-field measurements and laboratory-based studies - or soil incubations - like those performed at Argonne. To better understand how future warming might affect CO2 emissions in permafrost regions, the Argonne scientists sampled a variety of permafrost soils and monitored CO2 release at a range of laboratory-controlled temperatures above and below freezing that mimic typical Arctic conditions.

The researchers wanted to identify how different soil properties or other factors influence the rate of decomposition and CO2 release from frozen and thawing soils - information that could help improve climate and Earth system models.

"Climate and Earth system models often treat these winter permafrost CO2 emissions as insignificant or even non-existent," said Roser Matamala, a scientist in Argonne's Environmental Science division and a contributor to the study.

"But this study, with its large volume of data extending over multiple seasons, shows that winter respiration is substantial and significant. The study should convince modelers that this flux of winter-time carbon to the atmosphere can no longer be overlooked. It is not small, and it needs to be taken into account."

The northern permafrost region covers approximately 15 percent of the Earth's land area, extending from the Arctic Ocean's coastline through much of Alaska, northern Canada and northern Eurasia. The ever-frozen soil in these regions contains more carbon than humans have ever released, and roughly a third of the carbon stored in all of Earth's soil exists in this region.

During the summer, plants whose roots grow in thawed soil above the perennially frozen subsoil absorb CO2 as they photosynthesize. At the same time, microbes release CO2 into the atmosphere as they actively decompose soil organic matter. In the winter, when the surface soil and underlying permafrost are both frozen, the rate of decay and the amount of CO2 returned to to the atmosphere drops significantly.

Yet, a small amount of microbial activity continues to decompose some of the organic matter contained in thin, unfrozen water films surrounding soil particles, releasing smaller amounts of CO2. For years, this balance was tipped toward greater absorption rather than release of CO2, but this study indicates that the loss of CO2 from permafrost soils to the atmosphere over the entire year is now greater than its uptake during the summer.

"Arctic soils have retained disproportionately large amounts of organic matter because frozen conditions greatly slow microbial decay of dead plant roots and leaves," said Argonne soil scientist and study contributor Julie Jastrow.

"But just as food in the freezer compartment of a refrigerator will spoil faster than it would in a chest freezer, the temperature of seasonally frozen soils and permafrost affects the amount of microbial activity and decomposition."

According to the Argonne scientists, microbial activity can increase exponentially as rising global temperatures warm the permafrost to levels just below freezing. Even before permafrost thaws, the acceleration in microbial activity in permafrost soil causes acceleration of its CO2 emissions.

Based on these results and upscaling across the Arctic, the authors estimate that about 1.7 billion metric tons of CO2 are released during current winter seasons, but that only 1 billion metric tons would be taken up by photosynthesizers in the summer months.

Computer models also showed that if humans were to mitigate their own emissions even minimally, winter CO2 emissions in the permafrost region would still increase 17 percent by 2100.

Research Report: "Large loss of CO2 in winter observed across northern permafrost region"


Related Links
Argonne National Laboratory
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Sea-ice-free Arctic makes permafrost vulnerable to thawing
Oxford UK (SPX) Jan 13, 2020
Permafrost is ground that remains frozen throughout the year; it covers nearly a quarter of Northern Hemisphere land. The frozen state of permafrost enables it to store large amounts of carbon; about twice as much as in the atmosphere. The rate and extent of future thawing of permafrost, and consequent release of its carbon, is hard to predict from modern observations alone. However, a crucial past relationship between summer sea ice in the Arctic and permafrost, discovered in this study, is now u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Spacewalks, science and Beyond

Experimental ISS oven allows astronauts to bake cookies in two hours

ESA and Airbus sign contract for Bartolomeo platform on the International Space Station

Bartolomeo starts its journey to the International Space Station

ICE WORLD
Stennis Space Center sets stage for Artemis testing in 2020

Russia to supply US with six RD-180 rocket engines this year

Fire at Firefly Aerospace interrupts rocket test

Russia claims edge as US lags in hypersonic weapons development

ICE WORLD
Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

Nine finalists chosen in Mars 2020 rover naming contest

ICE WORLD
China to launch Mars probe in July

China's space-tracking vessels back from missions

China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

ICE WORLD
Second space data highway satellite set to beam

Europe backs space sector investment with EUR 200 million of financing

Budget battle hampers EU in space

Lockheed Martin Ships Mobile Communications Satellite To Launch Site

ICE WORLD
Buildings can become a global CO2 sink if made out of wood instead of cement and steel

Astroscale awarded grant From to commercialize active debris removal services

Smart materials are becoming smarter

Texas AM engineers develop recipe to dramatically strengthen body armor

ICE WORLD
Some non-photosynthetic orchids consist of dead wood

The skin of the earth is home to pac-man-like protists

NESSI emerges as new tool for exoplanet atmospheres

Astronomers find a way to form 'fast and furious' planets around tiny stars

ICE WORLD
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.