. 24/7 Space News .
Rice Researchers Gain New Insight Into Nanoscale Optics

When small metallic nanoparticles are positioned on the metal film, they behave like tiny antennae that can transmit or receive light; it is this behavior that has been found to mimic that of electrons. Until now, the coupling of light waves into extended nanoscale structures has been poorly understood.

Houston TX (SPX) Sep 15, 2005
New research from Rice University has demonstrated an important analogy between electronics and optics that will enable light waves to be coupled efficiently to nanoscale structures and devices.

The research is available online from the journal Nano Letters and will appear in an upcoming print edition.

"We've discovered a universal relationship between the behavior of light and electrons," said study co-author Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering.

"We believe the relationship can be exploited to create nanoscale antennae that convert light into broadband electrical signals capable of carrying approximately 1 million times more data than existing interconnects."

Both light and electrons share similar properties, at times behaving like waves, at other times like particles. Many interesting solid-state phenomena, such as the scattering of atoms off surfaces and the behavior of quantum devices, can be understood as wavelike electrons interacting with discrete, localized electrons. Now, Rice researchers have discovered and demonstrated a simple geometry where light behaves exactly as electrons do in these systems.

In recent years there has been intense interest in developing ways to guide and manipulate light at dimensions much smaller than optical wavelengths. Metals like gold and silver have ideal properties to accomplish this task. Special types of light-like waves, called plasmons, can be transmitted along the surfaces of metals in much the same way as light in conventional optical fibers.

When small metallic nanoparticles are positioned on the metal film, they behave like tiny antennae that can transmit or receive light; it is this behavior that has been found to mimic that of electrons. Until now, the coupling of light waves into extended nanoscale structures has been poorly understood.

Nordlander's research was conducted under the auspices of Rice's Laboratory for Nanophotonics (LANP), a multidisciplinary group that studies the interactions of light with nanoscale particles and structures.

The study was co-authored by LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry.The findings stem from a relatively new area of research called plasmonics, which is a major LANP research thrust.

In the latest research, Halas' graduate student Nyein Lwin placed a tiny sphere of gold - measuring about 50 nanometers in diameter, within just a few nanometers of a thin gold film. When a light excited a plasmon in the nanosphere, this plasmon was converted into a plasmon wave on the film, for certain specific film thicknesses.

The experiments confirmed theoretical work by Nordlander's graduate student Fei Le, who showed that the interactions between thin-film surface plasmons and the plasmons of nearby nanoparticles were equivalent to the "standard impurity problem," a well-characterized phenomenon that condensed matter physicists have studied for more than four decades.

Other co-authors on the paper include Halas's graduate student Jennifer Steele, now a Professor at Trinity University, and former Texas Instruments Visiting Professor Mikael Kall of Chalmers University of Technology in Gothenburg, Sweden.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


A New Structural View Of Organic Electronic Devices
Washington DC (SPX) Sep 14, 2005
Although still in the qualifying rounds, U.S. researchers are helping manufacturers win the race to develop low-cost ways to commercialize a multitude of products based on inexpensive organic electronic materials - from large solar-power arrays to electronic newspapers that can be bent and folded.







  • World's Third Space Tourist Ready For Journey
  • A September Surprise For China's Second Manned Launch - Shenzhou 6
  • Russian and Ukrainian Space Agencies Outline Space Exploration Vision For 2007-2011
  • The Next Space Age Is Coming

  • Mars Express Instrument Under Investigation
  • Study: Ice Belt Encircled Mars' Equator
  • NASA May Use Hawaiian Ash In Mars Training
  • The Biblis Patera Volcano

  • Russia Launches Canadian Satellite
  • Historic Tower At Launch Complex 13 Toppled
  • Russia Could Initiate Establishment Of International Space Association
  • Sea Launch Signs With Panamsat For Second Land Launch Mission

  • Cryosat: The Ice Edge Holds The Key
  • NASA Satellite Data Used By INPE Provides Rapid Analysis Of Amazon
  • Tropical Deforestation Affects Rainfall In U.S. And Around Globe
  • Using Satellites To Investigate 'Greening' Trends Across Canada And Alaska

  • Santa et al
  • Hubble Makes Movie Of Neptune's Dynamic Atmosphere
  • Gemini Samples Spectrum Of 2003 UB313: Pluto-Like Surface
  • Scientists Discover Tenth Planet

  • The Galactic Centre Region
  • Star Death Beacon At The Edge Of The Universe
  • Astronomers Discover Fastest Intergalactic Space Traveller
  • XMM-Newton Probes Formation Of Galaxy Clusters

  • Lunar Probe Program Facing Three Major Difficulties
  • Taking A Radioactive Bath On The Moon
  • This Is Not Your Father's Moon Buggy
  • European Probe Sniffs Out A Site For Lunar Outpost

  • 2-Track Global Announces Successful Testing Of Starfish Product
  • Garmin To Provide GPS Applications For Mobile Phone Users
  • Navman Unveils New Pocket-Sized iCN 320 Portable Navigation Device
  • Father, Son Reflect On History, Future Of GPS

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement