. 24/7 Space News .
ENERGY TECH
Researchers virtually 'unwind' lithium battery for the first time
by Staff Writers
Didcot UK (SPX) Feb 11, 2020

Reconstructed tomograms from neutron and X-ray computed tomography. Clearly visible in the X-ray images is the nickel current collecting mesh, which appears brighter than the active electrode material.

An international team led by researchers at UCL has revealed new insights into the workings of a lithium battery by virtually "unrolling" its coil of electrode layers using an algorithm designed for papyrus scrolls.

In a study published in Nature Communications researchers combined X-ray and neutron tomography to track the processes deep within a lithium battery during discharge. They then used a mathematical model designed for ancient manuscripts too sensitive to be physically opened to "unroll" the electrode layers, so aiding analysis and revealing that different sections of the battery were operating differently.

Researchers found that using the two complementary imaging techniques and "unrolling" the electrodes while they are in normal use provides a fuller and more accurate understanding of how the battery works and how, where and why it degrades over time. Unseen trends in the spatial distribution of performance in the cells were observed.

The method paves the way for developing strategies for improving the design of cylindrical cells using a range of battery chemistries, including by informing better mathematical models of battery performance. As such the method may facilitate improvements in the range and lifetime of electric vehicles of the future.

The project was funded by the Faraday Institution, as part of its battery degradation project.

Further details
The team investigated the processes occurring during discharge of a cylindrical commercial Li-ion primary cell from Duracell using a combination of two highly complementary tomography methods. Tomography is a technique for displaying a representation of a cross section through a solid object through the use of a penetrating wave such as ultrasound or X-rays. The method is used in radiology, archaeology, atmospheric science, geophysics, oceanography as well as materials science.

X-rays are sensitive to heavier elements in the battery - such as manganese and nickel, and neutrons are sensitive to lighter elements - lithium and hydrogen, allowing the two techniques to visualise different parts of the battery structure and allowing researchers to build up a more complete understanding of the processes occurring deep within the cell during battery discharge.

X-ray computed tomography allowed for the quantification of mechanical degradation effects such as electrode cracking from the electrode bending process during cell manufacturing. Whereas the imaging using neutrons yielded information about the electrochemistry such as lithium-ion transport and consumption or gas formation by electrolyte decay.

A new mathematical method developed at the Zuse-Institut in Berlin then enabled researchers to virtually unwind the battery electrodes that are wound into the form of a compact cylinder. The cylindrical windings of the battery are difficult to examine quantitatively, and the cell cannot be unwound without inducing further damage that would not be present in an unwound battery.

Research Report: "4D imaging of Li-batteries using operando neutron and X-ray computed tomography in combination with a virtual unrolling technique,"


Related Links
The Faraday Institution
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Static electricity as strong as lightening can be saved in a battery
Pohang, South Korea (SPX) Feb 07, 2020
Static electricity shock which occurs more often in winter is unpleasant. When two different objects are in repeated contact, it causes friction which then creates static electricity. This can be found easily in our everyday actions and it is very annoying even between the lovers. In fact, there is no electric current flowing in static electricity but tens of thousands of volts occurs, equal to the power of lightening. Then, can we collect static electricity for use? The answer is yes. Pro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Record-breaking US astronaut set to return to Earth

Getting around the Solar System

DLR 2020 - research for climate, mobility and the energy transition

New research launching to station aboard Northrop Grumman's 13th Resupply Mission

ENERGY TECH
Changing the way NASA keeps it cool

Rocket Lab successfully launches U.S. spy satellite

India plans to send 50 satellite launch vehicles into orbit within next 5 years

Elon Musk drops surprise techno track

ENERGY TECH
Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

Nine finalists chosen in Mars 2020 rover naming contest

ENERGY TECH
China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

China's space-tracking vessels back from missions

ENERGY TECH
Space science investment generates income and creates jobs

Northrop Grumman breaks ground for expanded satellite manufacturing facilities in Gilbert, Arizona

US sees record year for private space sector in 2020

Xplore and Nanoracks partner to commercialize deep space

ENERGY TECH
New threads: Nanowires made of tellurium and nanotubes hold promise for wearable tech

Fastest high-precision 3D printer

AFRL, partners develop innovative tools to accelerate composites certification

Researchers report progress on molecular data storage system

ENERGY TECH
To make amino acids, just add electricity

AI could deceive us as much as the human eye does in the search for extraterrestrials

NESSI comes to life at Palomar Observatory

For hottest planet, a major meltdown, study shows

ENERGY TECH
Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.