. 24/7 Space News .
CARBON WORLDS
Researchers map tiny twists in "magic-angle" graphene
by Jennifer Chu for MIT News
Boston MA (SPX) May 11, 2020

In this illustration, two sheets of graphene are stacked together at a slightly offset "magic" angle, which can become either an insulator or superconductor. "We placed one sheet of graphene on top of another, similar to placing plastic wrap on top of plastic wrap," MIT professor Pablo Jarillo-Herrero says. "You would expect there would be wrinkles, and regions where the two sheets would be a bit twisted, some less twisted, just as we see in graphene."

Made of a single layer of carbon atoms linked in a hexagonal honeycomb pattern, graphene's structure is simple and seemingly delicate. Since its discovery in 2004, scientists have found that graphene is in fact exceptionally strong. And although graphene is not a metal, it conducts electricity at ultrahigh speeds, better than most metals.

In 2018, MIT scientists led by Pablo Jarillo-Herrero and Yuan Cao discovered that when two sheets of graphene are stacked together at a slightly offset "magic" angle, the new "twisted" graphene structure can become either an insulator, completely blocking electricity from flowing through the material, or paradoxically, a superconductor, able to let electrons fly through without resistance. It was a monumental discovery that helped launch a new field known as "twistronics," the study of electronic behavior in twisted graphene and other materials.

Now the MIT team reports their latest advancements in graphene twistronics, in two papers published this week in the journal Nature.

In the first study, the researchers, along with collaborators at the Weizmann Institute of Science, have imaged and mapped an entire twisted graphene structure for the first time, at a resolution fine enough that they are able to see very slight variations in local twist angle across the entire structure.

The results revealed regions within the structure where the angle between the graphene layers veered slightly away from the average offset of 1.1 degrees.

The team detected these variations at an ultrahigh angular resolution of 0.002 degree. That's equivalent to being able to see the angle of an apple against the horizon from a mile away.

They found that structures with a narrower range of angle variations had more pronounced exotic properties, such as insulation and superconductivity, versus structures with a wider range of twist angles.

"This is the first time an entire device has been mapped out to see what is the twist angle at a given region in the device," says Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. "And we see that you can have a little bit of variation and still show superconductivity and other exotic physics, but it can't be too much. We now have characterized how much twist variation you can have, and what is the degradation effect of having too much."

In the second study, the team report creating a new twisted graphene structure with not two, but four layers of graphene. They observed that the new four-layer magic-angle structure is more sensitive to certain electric and magnetic fields compared to its two-layer predecessor. This suggests that researchers may be able to more easily and controllably study the exotic properties of magic-angle graphene in four-layer systems.

"These two studies are aiming to better understand the puzzling physical behavior of magic-angle twistronics devices," says Cao, a graduate student at MIT. "Once understood, physicists believe these devices could help design and engineer a new generation of high-temperature superconductors, topological devices for quantum information processing, and low-energy technologies."

Like wrinkles in plastic wrap
Since Jarillo-Herrero and his group first discovered magic-angle graphene, others have jumped at the chance to observe and measure its properties. Several groups have imaged magic-angle structures, using scanning tunneling microscopy, or STM, a technique that scans a surface at the atomic level. However, researchers have only been able to scan small patches of magic-angle graphene, spanning at most a few hundred square nanometers, using this approach.

"Going over an entire micron-scale structure to look at millions of atoms is something that STM is not best suited for," Jarillo-Herrero says. "In principle it could be done, but would take an enormous amount of time."

So the group consulted with researchers at the Weizmann Institute for Science, who had developed a scanning technique they call "scanning nano-SQUID," where SQUID stands for Superconducting Quantum Interference Device. Conventional SQUIDs resemble a small bisected ring, the two halves of which are made of superconducting material and joined together by two junctions. Fit around the tip of a device similar to an STM, a SQUID can measure a sample's magnetic field flowing through the ring at a microscopic scale. The Weizmann Institute researchers scaled down the SQUID design to sense magnetic fields at the nanoscale.

When magic-angle graphene is placed in a small magnetic field, it generates persistent currents across the structure, due to the formation of what are known as "Landau levels." These Landau levels, and hence the persistent currents, are very sensitive to the local twist angle, for instance, resulting in a magnetic field with a different magnitude, depending on the precise value of the local twist angle. In this way, the nano-SQUID technique can detect regions with tiny offsets from 1.1 degrees.

"It turned out to be an amazing technique that can pick up miniscule angle variations of 0.002 degrees away from 1.1 degrees," Jarillo-Herrero says. "This was very good for mapping magic-angle graphene."

The group used the technique to map two magic-angle structures: one with a narrow range of twist variations, and another with a broader range.

"We placed one sheet of graphene on top of another, similar to placing plastic wrap on top of plastic wrap," Jarillo-Herrero says. "You would expect there would be wrinkles, and regions where the two sheets would be a bit twisted, some less twisted, just as we see in graphene."

They found that the structure with a narrower range of twist variations had more pronounced properties of exotic physics, such as superconductivity, compared with the structure with more twist variations.

"Now that we can directly see these local twist variations, it might be interesting to study how to engineer variations in twist angles to achieve different quantum phases in a device," Cao says.

Tunable physics
Over the past two years, researchers have experimented with different configurations of graphene and other materials to see whether twisting them at certain angles would bring out exotic physical behavior. Jarillo-Herrero's group wondered whether the fascinating physics of magic-angle graphene would hold up if they expanded the structure, to offset not two, but four graphene layers.

Since graphene's discovery nearly 15 years ago, a huge amount of information has been revealed about its properties, not just as a single sheet, but also stacked and aligned in multiple layers - a configuration that is similar to what you find in graphite, or pencil lead.

"Bilayer graphene - two layers at a 0-degree angle from each-other - is a system whose properties we understand well," Jarillo-Herrero says. "Theoretical calculations have shown that in a bilayer-on-top-of-bilayer structure, the range of angles over which interesting physics would happen is larger. So this type of structure might be more forgiving in terms of making devices."

Partly inspired by this theoretical possibility, the researchers fabricated a new magic-angle structure, offsetting one graphene bilayer with another bilayer by 1.1 degrees. They then connected the new "double-layer" twisted structure to a battery, applied a voltage, and measured the current that flowed through the device as they placed the structure under various conditions, such as a magnetic field, and a perpendicular electric field.

Just like magic-angle structures made from two layers of graphene, the new four-layered structure showed an exotic insulating behavior. But uniquely, the researchers were able to tune this insulating property up and down with an electric field - something that's not possible with two-layered magic-angle graphene.

"This system is highly tunable, meaning we have a lot of control, which will allow us to study things we cannot understand with monolayer magic-angle graphene," Cao says.

"It's still very early in the field," Jarillo-Herrero says. "For the moment, the physics community is still fascinated just by the phenomena of it. People fantasize about what type of devices we could make but realize it's still too early and we have so much yet to learn about these systems."

This research was funded, in part, by the U.S. Department of Energy, the National Science Foundation, the Gordon and Betty Moore Foundation, and the Sagol Weizmann-MIT Bridge Program.

Research Report: Mapping the twist-angle disorder and Landau levels in magic-angle graphene and Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene


Related Links
MIT News Office
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Graphene sets sail in microgravity
Santiago, Chile (SPX) May 07, 2020
Overseas exploration and trade during the Age of Discovery (15th-17th centuries) were possible by sail technology, and deep-space exploration will require the same for the coming Age of NewSpace. This time, however, the new sails shall move with light instead of wind, for which these light sails need to be extremely large, thin, lightweight, reflective and strong. In a light-hearted leap for humankind, ESA-backed researchers demonstrate the laser-propulsion of graphene sails in microgravity. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Google affiliate abandons futuristic neighborhood project

NASA, SpaceX target historic spaceflight despite pandemic

NASA's new solar sail system to be tested on-board NanoAvionics' satellite

180 day commercial Soyuz mission to ISS possible in 2022

CARBON WORLDS
Why our launch of the NASA and SpaceX Demo-2 mission to the ISS is essential

NASA commits to future Artemis missions with more SLS rocket engines ordered

UCF researchers develop groundbreaking new rocket-propulsion system

NASA lengthens SpaceX's first crewed mission to ISS

CARBON WORLDS
NASA's Perseverance rover will look at Mars through these 'eyes'

UBC researchers establish new timeline for ancient magnetic field on Mars

Emirates first Mars mission ready for launch from Japan's Tanegashima Space Centre

Martian meteorites contain 4-billion-year-old nitrogen-bearing organic material

CARBON WORLDS
China builds Asia's largest steerable radio telescope for Mars mission

China recollects first satellite stories after entering space for 50 years

China's first Mars exploration mission named Tianwen-1

Parachutes guide China's rocket debris safely to earth

CARBON WORLDS
Infostellar has raised a total of $3.5M in convertible bonds

SpaceX develops new sunshade to make Starlink satellites less visible from Earth

Elon Musk's SpaceX launches 60 Starlink satellites from Florida

Momentus selected as launch provider for Swarm

CARBON WORLDS
Gaming becomes king of entertainment in pandemic lockdown

'Assassin's Creed' stars as Xbox teases new games

Getting by in the pandemic with help from (virtual) friends

Liquid metal research invokes 'Terminator' film - but much friendlier

CARBON WORLDS
New study examines which galaxies are best for intelligent life

Astronomers could spot life signs orbiting long-dead stars

Astronomers capture rare images of planet-forming disks around stars

Newly discovered exoplanet dethrones former king of Kepler-88 planetary system

CARBON WORLDS
Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter probe JUICE: Final integration in full swing

The birth of a "Snowman" at the edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.