. 24/7 Space News .
TECH SPACE
Researchers discover weak chemical interactions hold together box of infinite possibilities
by Staff Writers
Tokyo, Japan (SPX) Nov 01, 2018

Professor Shuichi Hiraoka at the University of Tokyo first created a self-assembling nanocube in 2008 and has worked to improve the solubility and temperature stability since then. The current self-assembling hexaphenylbenzene nanocube is soluble in water and stable up to 130 degrees Celsius (266 degrees Fahrenheit). The most recent publication from his research team identified the role of weak molecular forces in holding the box together.

Researchers have identified the weak molecular forces that hold together a tiny, self-assembling box with powerful possibilities. The study demonstrates a practical application of a force common in biological systems and advances the pursuit of artificial chemical life.

"I want to understand self-assembly systems, which are essential for life. Building artificial self-assembling cubes helps us understand how biological systems function," said Professor Shuichi Hiraoka, leader of the laboratory at the University of Tokyo Graduate School of Arts and Sciences where the boxes were designed, built, and analyzed.

The formation of DNA and proteins are biological examples of self-assembly, but the forces or processes controlling how these natural molecules come together also remain undefined. Investigations by Hiraoka's team contribute to chemical understanding of how natural molecules might self-assemble and reveal techniques for mimicking those processes in the future.

Hiraoka and his team identified the forces holding together the sides of their tiny boxes as van der Waals forces, mainly dispersion forces. These forces are weak attractions between molecules created when electrons temporarily group together on one side of an atom. Geckos can walk up walls in part due to van der Waals forces.

Each side of the cube is formed from one molecule that is 2 nanometers in diameter and shaped like a six-pointed snowflake. Each side is about one-four-thousandth the size of a human blood cell. The weak forces holding the sides of the cube together make the box slightly flexible, so it adjusts to best accommodate guest molecules based on their size, shape, and atomic charge. The box can bulge to hold large or long contents and contract to eliminate extra space when hosting guest molecules with negative charge(s).

"We do not have the data yet, but the logical conclusion is that long chainlike guest molecules somehow fold to get inside the box," said Hiraoka.

Researchers build the tiny box out of molecules of hexaphenylbenzene. The individual molecules exist as a dry, white powder. When mixed with water, the molecules spontaneously self-assemble into cubes.

"In solution, the six molecules come together so quickly that we cannot observe how they form cubes. The exact process of self-assembly remains a mystery," said Hiraoka.

A cube that can self-assemble in water has the potential for future biological applications. The hexaphenylbenzene cube also holds together even above the boiling temperature of water, remaining stable up to 130 degrees Celsius (266 degrees Fahrenheit).

The six points of the snowflake-shaped hexaphenylbenzene molecules lock together when they assemble into a cube. Researchers describe the design of this molecular box as resembling the Japanese wood joining technique called hozo, where pieces of wood are held together without adhesives or hinges, using only intricate interlocking designs.

In addition to van der Waals forces, other forces also contribute to holding the box together, specifically the hydrophobic effect (exclusion of water molecules) and cation-p interactions (an attraction between molecular bonds and positively charged ions).

Hiraoka's team uses physical chemistry techniques including nuclear magnetic resonance spectroscopy to characterize the box. Because the box only forms when mixed in water, researchers cannot use imaging techniques that require solid samples. The motion of the box as it self-assembles and bulges or contracts to host new molecules is not visible with techniques that require stationary samples.

Hiraoka's research group first constructed a similar cube in 2008 and has worked to improve the water solubility and thermal stability since then.

The study is published in Nature Communications. Collaborators in Japan at Ritsumeikan University and Tokyo Institute of Technology also contributed to the research.

Yi-Yang Zhan, Tatsuo Kojima, Takashi Nakamura, Toshihiro Takahashi, Satoshi Takahashi, Yohei Haketa, Yoshiaki Shoji, Hiromitsu Maeda, Takanori Fukushima, and Shuichi Hiraoka. 31 October 2018. Induced-fit expansion and contraction of a self-assembled nanocube finely responding to neutral and anionic guests. Nature Communications. DOI: 10.1038/s41467-018-06874-y


Related Links
University of Tokyo
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
New composite material that can cool itself down under extreme temperatures
Nottingham UK (SPX) Oct 29, 2018
A cutting-edge material, inspired by nature, that can regulate its own temperature and could equally be used to treat burns and help space capsules withstand atmospheric forces is under development at the University of Nottingham. The research paper, Temperature - dependent polymer absorber as a switchable state NIR reactor, is published in the journal Scientific Reports Friday 26 October. "A major challenge in material science is to work out how to regulate man-made material temperature as ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Plant hormone makes space farming a possibility

Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

TECH SPACE
Russia launches first Soyuz rocket since failed space launch

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

Probe commission rules out sabotage as possible cause of Soyuz failure

US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

TECH SPACE
Mars Express keeps an eye on curious cloud

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

Mars likely to have enough oxygen to support life: study

TECH SPACE
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

TECH SPACE
Ministers endorse vision for the future of Europe in space

Space industry entropy

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

TECH SPACE
Eye-tracking glasses provide a new vision for the future of augmented reality

New composite material that can cool itself down under extreme temperatures

Novel material could make plastic manufacturing more energy-efficient

Origami, 3D printing merge to make complex structures in one shot

TECH SPACE
Giant planets around young star raise questions about how planets form

Plan developed to characterize and identify ocean worlds

Discovering a previously unknown role for a source of magnetic fields

Ultra-close stars discovered inside a planetary nebula

TECH SPACE
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.