. | . |
Researchers discover new type of stellar collision by Staff Writers Minneapolis MN (SPX) Oct 11, 2018
For three and a half centuries, astronomers have pondered a mystery: What did the French monk and astronomer Pere Dom Anthelme see when he described a star that burst into view in June 1670, just below the head of the constellation Cygnus, the swan? It was long thought to be a nova - a star that periodically brightens as it blows off mass. But now, an international team of astrophysicists, including two professors at the University of Minnesota, have cracked the 348-year-old conundrum. The monk witnessed the explosive merger of white and brown dwarf stars - the first ever identified. The work, led by astrophysicists at Keele University (England), is published in the Monthly Notices of the Royal Astronomical Society. White dwarfs are the remnants of stars like the sun at the end of its life, while brown dwarfs are "failed stars" that have 15-75 times the mass of Jupiter, but not enough to ignite the thermonuclear fusion reactions that power the sun and other stars. The two stars orbited each other until they got too close and merged, spewing out debris whose chemical composition gave away the secret of the mystery object's origin.
The brown dwarf got the raw end of the deal Woodward and fellow University of Minnesota physics and astronomy professor Robert Gehrz were members of the team that proposed studying the object and assisted in designing the program of observations, which were done at the Atacama Large Millimeter/submillimeter Array (ALMA) of telescopes in Chile.
Beneath the swan, an odd duck The white dwarf and brown dwarf started out fairly ordinary - orbiting each other in a binary system, as astrophysicists believe most stars are born. The white dwarf had an estimated 10 times the brown dwarf's mass. As they merged, the brown dwarf was torn apart and its remains dumped on the surface of the white dwarf. That star's crushing gravity heated the brown dwarf material and caused thermonuclear "burning" that spilled out a cocktail of molecules and unusual forms (isotopes) of chemical elements. It also caused the brightening that caught the eye of the monk Anthelme.
Rounding up the unusual suspects Studying the light from two background stars that had passed through the system, the researchers noted the presence of lithium, a light element that can't exist in the interiors of stars, where nuclear fusion occurs. They also found organic molecules like formaldehyde and methyl alcohol, which also would perish in stellar interiors. Thus, these molecules must have been produced in the debris from the collision. The amount of dust in the debris was about one percent the mass of the sun. "That's too high for a classical nova outburst and too low for mergers of more massive stars, as had been proposed earlier," said Sumner Starrfield, a professor at Arizona State University who was involved in the study. That evidence, plus isotope data, led to the conclusion that the collision was between a white dwarf and brown dwarf. And the remnant star is still blowing off material. "Collisions like this could contribute to the chemical evolution of our galaxy and universe," noted Minnesota's Gehrz. "The ejected material travels out into space, where it gets incorporated into new generations of stars."
Research Report: "ALMA reveals the aftermath of a white dwarf - brown dwarf merger in CK Vulpeculae"
When is a nova not a nova? When a white dwarf and a brown dwarf collide Newcastle UK (SPX) Oct 09, 2018 Researchers from Keele University have worked with an international team of astronomers to find for the first time that a white dwarf and a brown dwarf collided in a 'blaze of glory' that was witnessed on Earth in 1670. Using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the international team of astronomers, including workers from the Universities of Keele, Manchester, South Wales, Arizona State, Minnesota, Ohio State, Warmia and Mazury, and the South African Astronomical Obse ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |