Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Researchers discover a new path for light through metal
by Staff Writers
Washington DC (SPX) Mar 30, 2012


This image shows a) Excitation by light of a surface plasmon-polariton on a thin film of titanium nitride. b) Atomic force microscope image of the surface of titanium nitride film. The mean roughness of the film is 0.5 nm. c) Scanning electron microscopy image of TiN thin film on sapphire. The texture shows multivariant epitaxial (crystalline) growth. Credit: Alexandra Boltasseva, Purdue University/Optical Materials Express.

Helping bridge the gap between photonics and electronics, researchers from Purdue University have coaxed a thin film of titanium nitride into transporting plasmons, tiny electron excitations coupled to light that can direct and manipulate optical signals on the nanoscale.

Titanium nitride's addition to the short list of surface-plasmon-supporting materials, formerly comprised only of metals, could point the way to a new class of optoelectronic devices with unprecedented speed and efficiency.

"We have found that titanium nitride is a promising candidate for an entirely new class of technologies based on plasmonics and metamaterials," said Alexandra Boltasseva, a researcher at Purdue and an author on a paper published in the Optical Society's open-access journal Optical Materials Express. "This is particularly compelling because surface plasmons resolve a basic mismatch between wavelength-scale optical devices and the much smaller components of integrated electronic circuits."

Value of Plasmons
Metals carry electricity with ease, but normally do nothing to transmit light waves. Surface plasmons, unusual light-coupled oscillations that form on the surface of metallic materials, are the exception to that rule. When excited on the surface of metals by light waves of specific frequencies, plasmons are able to retain that same frequency, but with wavelengths that are orders-of-magnitude smaller, cramming visible and near-infrared light into the realm of the nanoscale.

In the world of electronics and optics, that 100-fold contraction is a boon. Circuits that direct the paths of electrons operate on a much smaller scale than optical light waves, so engineers must either rely on small but relatively sluggish electrons for information processing or bulk up to accommodate the zippy photons.

Plasmons represent the best of both worlds and are already at the heart of a number of optoelectronic devices. They have not had widespread use, however, due to the dearth of materials that readily generate them and the fact that metals, in most cases, cannot be integrated with semiconductor devices.

Plasmonic Materials
Until now, the best candidates for plasmonic materials were gold and silver. These noble metals, however, are not compatible with standard silicon manufacturing technologies, limiting their use in commercial products.

Silver is the metal with the best optical and surface plasmon properties, but it forms grainy, or semi-continuous, thin films. Silver also easily degrades in air, which causes loss of optical signal, making it a less-attractive material in plasmon technologies.

In an effort to overcome these drawbacks, Boltasseva and her team chose to study titanium nitride-a ceramic material that is commonly used as a barrier metal in microelectronics and to coat metal surfaces such as medical implants or machine tooling parts-because they could manipulate its properties in the manufacturing process.

It also could be easily integrated into silicon products, and grown crystal-by-crystal, forming highly uniform, ultrathin films-properties that metals do not share.

To test its plasmonic capabilities, the researchers deposited a very thin, very even film of titanium nitride on a sapphire surface. They were able to confirm that titanium nitride supported the propagation of surface plasmons almost as efficiently as gold. Silver, under perfect conditions, was still more efficient for plasmonic applications, but its acknowledged signal loss limited its practical applications.

To further improve the performance of titanium nitride, the researchers are now looking into a manufacturing method known as molecular beam epitaxy, which would enable them to grow the films and layered structures known as superlattices crystal-by-crystal.

Technologies and Potential Applications
In addition to plasmonics, the researchers also speculate that titanium nitride may have applications in metamaterials, which are engineered materials that can be tailored for almost any application because of their extraordinary response to electromagnetic, acoustic, and thermal waves. Recently proposed applications of metamaterials include invisibility cloaks, optical black holes, nanoscale optics, data storage, and quantum information processing.

The search for alternatives to noble metals with improved optical properties, easier fabrication and integration capabilities could ultimately lead to real-life applications for plasmonics and metamaterials.

"Plasmonics is an important technology for nanoscale optical circuits, sensing, and data storage because it can focus light down to nanoscale," notes Boltasseva. "Titanium nitride is a promising candidate in the near-infrared and visible wavelength ranges. Unlike gold and silver, titanium nitride is compatible with standard semiconductor manufacturing technology and provides many advantages in its nanofabrication and integration."

According to the researchers, titanium nitride-based devices could provide nearly the same performance for some plasmonic applications. While noble metals like silver would still be the best choice for specific applications like negative index metamaterials, titanium nitride could outperform noble metals in other metamaterial and transformation optics devices, such as those based on hyperbolic metamaterials.

Paper: "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," Naik et al., Optical Materials Express, Vol. Vol. 2, Issue 4, pp. 478-489 (2012).

.


Related Links
Optical Society of America
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
More energy efficient transistors through quantum tunneling
Notre Dame IN (SPX) Mar 28, 2012
Researchers at the University of Notre Dame and Pennsylvania State University have announced breakthroughs in the development of tunneling field effect transistors (TFETs), a semiconductor technology that takes advantage of the quirky behavior of electrons at the quantum level. Transistors are the building blocks of the electronic devices that power the digital world, and much of the growt ... read more


CHIP TECH
Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

CHIP TECH
Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

Slight Drop Of Left-Front Wheel

'Mount Sharp' On Mars Links Geology's Past and Future

A glow in the Martian night throws light on atmospheric circulation

CHIP TECH
NASA Space Network to Begin New Design Phase For Ground Segment

Leading Government Space Programs Under Strong Budget Pressure

ICAP Ocean Tomo Auctions NASA Software Patent Portfolios

Not your average heat shield

CHIP TECH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

CHIP TECH
Aerojet Propulsion Helps Deliver Astronaut Care Packages

Soyuz return from ISS set for April 27

European cargo vessel docks with space station

Beaming Success for ISS Fans

CHIP TECH
SpaceX names safety panel

Swiss pioneer motor aimed at slashing satellite launch costs

ATREX Mission Launched from Wallops

ILS Proton Launches Intelsat 22

CHIP TECH
Billions of Habitable Zone Rocky Planets Could be Orbiting Red Dwarf Stars

Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

CHIP TECH
'Full-body' audit finds abuses at China Apple plants

ORNL process converts polyethylene into carbon fiber

Foxconn promises improvements after labour audit

Google plans low-price tablet computer: reports




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement