. 24/7 Space News .
EARLY EARTH
Researchers ID pigment from fossils, revealing color of extinct animals
by Staff Writers
Blacksburg VA (SPX) Oct 01, 2015


Caitlin Colleary, a doctoral student of geosciences in the College of Science at Virginia Tech, says the original color patterns of ancient animals can be determined through fossils. Image courtesy Virginia Tech.

Scientists from Virginia Tech and the University of Bristol have revealed how pigment can be detected in mammal fossils, a discovery that may end the guesswork in determining the colors of extinct species.

The researchers discovered the reddish brown color of two extinct species of bat from fossils dating back about 50 million years, marking the first time the colors of extinct mammals have been described through fossil analysis.

The techniques can be used to determine color from well-preserved animal fossils that are up to 300 million years old, researchers said.

"We have now studied the tissues from fish, frogs, and tadpoles, hair from mammals, feathers from birds, and ink from octopus and squids," said Caitlin Colleary, a doctoral student of geosciences in the College of Science at Virginia Tech and lead author of the study. "They all preserve melanin, so it's safe to say that melanin is really all over the place in the fossil record. Now we can confidently fill in some of the original color patterns of these ancient animals."

The research involved scientists from the U.S., the United Kingdom, Germany, Ethiopia, and Denmark. It is being published this week (Sept. 28) in the Proceedings of the National Academy of Sciences.

The researchers said microscopic structures traditionally believed to be fossilized bacteria are in fact melanosomes - organelles within cells that contain melanin, the pigment that gives colors to hair, feathers, skin, and eyes.

Fossil melanosomes were first described in a fossil feather in 2008 by Jakob Vinther, a molecular paleobiologist at the University of Bristol and the senior author of the current study.

Since then, the shapes of melanosomes have been used to look at how marine reptiles are related and identify colors in dinosaurs and, now, mammals.

"Very importantly, we see that the different melanins are found in organelles of different shapes: reddish melanosomes are shaped like little meatballs, while black melanosomes are shaped like little sausages and we can see that this trend is also present in the fossils," Vinther said. "This means that this correlation of melanin color to shape is an ancient invention, which we can use to easily tell color from fossils by simply looking at the melanosomes shape."

In addition to shape, melanosomes are chemically distinct.

Using an instrument called a time-of-flight secondary ion mass spectrometer, scientists identified the molecular makeup of the fossil melanosomes to compare with modern melanosomes.

In addition, researchers replicated the conditions under which the fossils formed to identify the chemical alteration of melanin, subjecting modern feathers to high temperatures and pressures to better understand how chemical signatures changed during millions of years of burial.

"By incorporating these experiments, we were able to see how melanin chemically changes over millions of years, establishing a really exciting new way of unlocking information previously inaccessible in fossils, Colleary said.

The work was carried out at the University of Bristol, where Colleary was a master's student working with Vinther, and the University of Texas at Austin. It was supported by funds from UT Austin, National Geographic, and the University of Bristol.

"It was important to bring microchemistry into the debate, because discussion has been going on for years over whether these structures were just fossilized bacteria or specific bodies where melanin is concentrated," said Roger Summons, the Schlumberger Professor of Earth Science at the Massachusetts Institute of Technology, who was not involved in the research. "These two things have very different chemical compositions."

Summons, who was part of a research team that studied fossils of squid to show that ink from the Jurassic period was chemically indistinguishable from modern cuttlefish ink, said the study further helps demonstrate how all living things on Earth have evolved in concert.

"How color is imparted and how we characterize it in fossils are important, because they inform us about a very specific aspect of the history of life on our planet," Summons said. "For complex animal life, color is a factor in how individuals recognize and respond to others, determine friend or foe, and find mates. This research provides another thread to understand how ancient life evolved. Color recognition was an important part of that process, and it goes far back in the history of animals."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Virginia Tech
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Synthesizing how molecules formed at dawn of life on Earth
Barcelona, Spain (SPX) Sep 25, 2015
Researchers from the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), with support from the Nuclear Magnetic Resonance Service of the Universitat Autonoma de Barcelona (UAB) have developed a method for synthesising organic molecules very selectively, by assembling simple molecules and using an enzyme from E. coli (FSA: D-fructose-6-phosphate aldolase), which acts as a biocatalyst. ... read more


EARLY EARTH
Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

NASA's Lunar Reconnaissance Orbiter's Dance with Eclipses

China to rehearse new carrier rocket for lunar mission

NASA's LRO discovers Earth's pull is 'massaging' our moon

EARLY EARTH
NASA's Big Mars Story

Mars water find boosts quest for extra-terrestrial life

Rover's Current Location Makes Communications a Challenge

NASA Confirms Evidence That Liquid Water Flows on Today's Mars

EARLY EARTH
Down to Earth and walking the line

Next stop for the Perlan 2 Glider: The edge of space

India PM heads to Silicon Valley chasing a digital dream

Airbus Defence and Space builds first hardware for Orion space vehicle's service module

EARLY EARTH
The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

Long March-2D carrier rocket blasts off in NW China

EARLY EARTH
NASA Selects Five New Flight Directors to Lead Mission Control

Space fish detail effects of microgravity on bones

Fire in the Hole: Studying How Flames Grow in Space

US astronaut misses fresh air halfway through year-long mission

EARLY EARTH
Spaceflight Purchases SpaceX Falcon 9 Flight For Small Satellite Industry

Assembly begins for the Ariane 5 to orbit Arabsat-6B and GSAT-15 in Nov

After Astrosat success, India set to launch 23 foreign satellites

ULA Selects Orbital ATK to Provide Solid Boosters for Atlas V and Vulcan Launch Vehicles

EARLY EARTH
The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

EARLY EARTH
Latvia orders Sentinel 3-D radars

Benign by design

Pentagon delays JSTARS acquisition

Oculus proclaims dawn of 'virtual reality era'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.