. 24/7 Space News .
TECTONICS
Research may explain mysterious deep earthquakes in subduction zones
by Staff Writers
Providence RI (SPX) Feb 04, 2016


The mineral lawsonite undergoes brittle failure at high temperature and pressure, as evidenced by the cracks seen in the sample above. That brittleness could trigger earthquakes in subduction zones where lawsonite is present. Image courtesy Hirth Lab / Brown University. For a larger version of this image please go here.

Geologists from Brown University may have finally explained what triggers certain earthquakes that occur deep beneath the Earth's surface in subduction zones, regions where one tectonic plate slides beneath another.

Subduction zones are some of the most seismically active areas on earth. Earthquakes in these spots that occur close to the surface can be devastating, like the one that struck Japan in 2011 triggering the Fukushima nuclear disaster.

But quakes also occur commonly in the subducting crust as it pushes deep below the surface - at depths between 70 and 300 kilometers. These quakes, known as intermediate depth earthquakes, tend to be less damaging, but can still rattle buildings.

Intermediate depth quakes have long been something of a mystery to geologists.

"They're enigmatic because the pressures are so high at that depth that the normal process of frictional sliding associated with earthquakes is inhibited," said Greg Hirth, professor of earth, environmental, and planetary sciences at Brown. "The forces required to get things to slip just aren't there."

But through a series of lab experiments, Hirth and postdoctoral researcher Keishi Okazaki have shown that as water escapes from a mineral called lawsonite at high temperatures and pressures, the mineral becomes prone to the kind of brittle failure required to trigger an earthquake.

"Keishi's experiments were basically the first tests at conditions appropriate for where these earthquakes actually happen in the earth," Hirth said. "They're really the first to show strong evidence for this dehydration embrittlement."

The experiments were done in what's known as a Grigg's apparatus. Okazaki placed samples of lawsonite in a cylinder and heated it up through the range of temperatures where water becomes unstable in lawsonite at high pressures.

A piston then increased the pressure until the mineral began to deform. A tiny seismometer fixed to the apparatus detected sudden cracking in the lawsonite, a signal consistent with brittle failure.

Okazaki performed similar experiments using a different mineral, antigorite, which had been previously implicated as contributing to intermediate depth seismicity. In contrast to lawsonite, the antigorite failed more gradually - squishing rather than cracking - suggesting that antigorite does not play a role in these quakes.

"That's one of the cool things about this," Hirth said. "For 50 years everyone has assumed this is a process related to antigorite, despite the fact that there wasn't much evidence for it. Now we have good experimental evidence of this dehydration process involving lawsonite."

If lawsonite is indeed responsible for intermediate depth earthquakes, it would explain why such quakes are common in some subduction zones and not others. The formation of lawsonite requires high pressures and low temperatures.

It is found in so-called "cold" subduction zones in which the suducting crust is older and therefore cooler in temperature. One such cold zone is found in northwest Japan. But conditions in "hot" subduction zones, like the Cascadia subduction zone off the coast of Washington state, aren't conducive to the formation of lawsonite.

"In hot subduction zones, we have very few earthquakes in the subducting crust because we have no lawsonite," Okazaki said. "But in cold subduction zones, we have lawsonite and we get these earthquakes."

Ultimately, Hirth says research like this might help scientists to better understand why earthquakes happen at different places under different conditions.

"Trying to put into the context of all earthquakes how these processes are working might be important not just for understanding these strange types of earthquakes, but all earthquakes," he said.

"We don't really understand a lot of the earthquake cycle. Predictability is the ultimate goal, but we're still at the stage of thinking about what's the recipe for different kinds of earthquakes. This appears to be one of those recipes."

The work will be published on February 4, 2016 in the journal Nature.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
New study zeros in on plate tectonics' start date
College Park MD (SPX) Jan 22, 2016
Earth has some special features that set it apart from its close cousins in the solar system, including large oceans of liquid water and a rich atmosphere with just the right ingredients to support life as we know it. Earth is also the only planet that has an active outer layer made of large tectonic plates that grind together and dip beneath each other, giving rise to mountains, volcanoes, eart ... read more


TECTONICS
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

TECTONICS
Mars Rover Opportunity Busy Through Depth of Winter

India to Cooperate With France on Next Mission to Mars

Opportunity rock abrasion tool conducts two rock grinds

Curiosity gets a good taste of scooped, sieved sand

TECTONICS
Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

TECTONICS
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

TECTONICS
Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

TECTONICS
70th consecutive successful launch for Ariane 5

AMOS-6 Scheduled for May 2016 Launch by Space-X

SpaceX Tests Crew Dragon Parachutes

Arianespace's year-opening Ariane 5 mission is approved for launch

TECTONICS
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

TECTONICS
Energy harvesting via smart materials

Imaged 'jets' reveal cerium's post-shock inner strength

ChemChina 'eyeing Syngenta' in biggest ever Chinese takeover

Controlling the magnetic properties of individual iron atom









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.