. | . |
Red Sea flushes faster from far flung volcanoes by Staff Writers Thuwal, Saudi Arabia (SPX) Jul 24, 2018
Deep water in the Red Sea gets replenished much faster than previously thought and its circulation is directly affected by major climatic events, including volcanic eruptions, KAUST researchers have found. Waters occupying depths from 300 to 2000 meters in the Red Sea are recognized as the warmest and saltiest deep water in the world, with near-homogenous temperatures above 20 degrees Celsius and salinities higher than 40.5 practical salinity units (psu). The world average for similar depths is 2.5 degrees Celsius and 35 psu. Until now, research has suggested that the Red Sea's deep water is relatively stagnant, taking some 36 to 90 years to renew, and that its main source of renewal is water flowing from the northern Gulfs of Suez and Aqaba into the sea's main basin. KAUST Associate Professor Ibrahim Hoteit, who specializes in earth fluid modeling, with Fengchao Yao, a physical oceanographer, used an ocean circulation simulator to gain further insight into the circulation of the Red Sea's deep water. They compared the temperature and salinity data gathered by six cruises from along the central axis of the Red Sea and found evidence revealing deep circulation changes during the period between 1982 and 2011. They then used atmospheric data to reconstruct the Red Sea's three-dimensional circulation over a 20-year period. "We found that the deep water of the Red Sea experienced rather rapid renewals in the period from 1982 to 2001, which is against the conventional idea that it is mostly stagnant," says Yao. The 1982 El Chichon volcanic eruption in Mexico and the 1991 Mount Pinatubo eruption in the Philippines were implicated. "The model simulation also convincingly linked these deep water renewals to the global climate variability associated with remote volcanic eruptions and the North Atlantic Oscillation, an inherent atmospheric variability mostly affecting Europe," Yao explained. Generally, volcanic eruptions warm the middle atmosphere of the tropics by releasing large amounts of sulfate aerosols, which absorb the sun's rays for periods of up to two years. The westerly jet across the Atlantic Ocean becomes stronger as the atmospheric circulation adjusts to this warming. This, in turn, increases dry, cold northwesterly winds above the Red Sea: heat is lost from the sea's waters to the air, and the surface temperature becomes cold enough to trigger warmer waters to rise and colder waters to sink. This is known as open-ocean deep convection. In contrast with previous studies, Hoteit and Yao found it was this open-ocean deep convection that formed the primary source of the replenishment of the Red Sea's deep water while the flows of water originating in the Gulfs of Suez and Aqaba represented secondary sources. Organic matter from surface waters falls downwards, where it decomposes into its basic mineral components. This makes deep water rich in nutrients, so its circulation affects the health of the Red Sea ecosystem as a whole. "Also, because the floor of the Red Sea is abundant in mineral deposits and metals, understanding deep circulations is vital for environmentally sustainable deep-sea exploration and mining," says Hoteit.
Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle Lawrence KS (SPX) Jul 23, 2018 If you could hover far above the southeast Atlantic Ocean, particularly during the months of April through June, on many days you will likely witness a sharp line of clearing moving east-to-west and eroding large regions of low cloud typically present over the region. Although clouds grow and dissipate all of the time, scientists think that these low-lying clouds off the coast of subtropical Africa are being disrupted not simply by wind from the continent, but rather by a wave mechanism. For ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |