. 24/7 Space News .
ENERGY TECH
Putting that free energy around you to good use with minuscule energy harvesters
by Staff Writers
Tokyo, Japan (SPX) Jan 29, 2019

Unlike conventional electret-based MEMS energy harvesters, which contain the entire system in a single chip, the proposed design methodology involves having the electret and the MEMS tunable capacitor in different chips, loosening up design constraints.

Scientists at Tokyo Institute of Technology (Tokyo Tech) developed a micro-electromechanical energy harvester that allows for more flexibility in design, which is crucial for future IoT applications.

Nowadays, it would be hard to not notice that electronic devices have become incredibly small. The use of miniature sensors in the upcoming Internet of Things (IoT) era could enable us to develop applications that were only seen in science fiction.

However, microelectronic devices still require power to run, and energy-harvesting micro-electromechanical systems (MEMS) can be used so that these minuscule contraptions can run on ambient energy, such as that coming from mechanical vibrations.

As depicted in Fig. 1, conventional MEMS energy harvesters use an electret (the electrical equivalent of a permanent magnet; it has permanent charge stored in it) placed in an MEMS tunable capacitor, which has a moving electrode that is pushed by ambient forces, inducing the movement of charges.

Unfortunately, this design is very constrained because the fabrication processes for both the electret and the MEMS components have to be compatible.

Therefore, a team of scientists, including Assistant Professor Daisuke Yamane from Tokyo Institute of Technology, proposed a new MEMS electret-based energy harvester that consists of two separate chips: one for the MEMS tunable capacitor, and one containing an electret and dielectric material to form another capacitor (Fig. 1). "This allows us to physically separate MEMS structures and electrets for the first time," states Yamane.

The energy-harvesting mechanism of the device is shown in Fig. 2 above. The capacitance of the electret circuit is fixed (Cfix), whereas that of the MEMS tunable capacitor (CM) changes according to the stretching of the spring (caused by external vibrations).

When CM becomes higher than Cfix, a movement of charges is induced and the tunable capacitor gains charge. Likewise, when Cfix is higher, charges move in the opposite direction and the capacitor in the electret circuit gains charge.

These movements of charges represent electrical power that can be exploited. The left side of Fig. 2 below shows pictures of the fabricated chips and a simplified diagram, and the right side shows that voltage can be effectively generated.

"The proposed method can be a promising way to enhance the design and fabrication flexibility of both MEMS structures and electrets," concludes Yamane. Loosening up design constraints expands the limits for engineers and will accelerate the onset of the IoT era so that we can reap its benefits.

Research paper


Related Links
Tokyo Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Static electricity could charge our electronics
Buffalo NY (SPX) Jan 28, 2019
Unhappy with the life of your smartphone battery? Thought so. Help could be on the way from one of the most common, yet poorly understand, forms of power generation: static electricity. "Nearly everyone has zapped their finger on a doorknob or seen child's hair stick to a balloon. To incorporate this energy into our electronics, we must better understand the driving forces behind it," says James Chen, PhD, assistant professor in the Department of Mechanical and Aerospace Engineering in the School ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Blue Origin to make 10th flight test of space tourist rocket

Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

China is growing crops on the far side of the moon

ENERGY TECH
P120C solid rocket motor tested for use on Vega-C

To Catch a Wave, Rocket Launches From Top of World

China's Long March-5 rocket to resume flight in July

Avangard Hypersonic Glide Vehicle Devs Patent New Rocket Refueling Tech

ENERGY TECH
Curiosity Says Farewell to Mars' Vera Rubin Ridge

NASA's Opportunity Rover Logs 15 Years on Mars

Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

ENERGY TECH
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

ENERGY TECH
Thales Alenia Space and Maxar Consortium Achieve Major Milestone in Design Phase of Telesat's LEO Satellite Constellation

Swarm Raises 25M to build world's lowest-cost satellite network

OneWeb's first satellites arrive in Kourou, French Guiana in preparation for the first OneWeb launch on February 19, 2019

mu Space unveils plan to bid for space exploration projects

ENERGY TECH
Radiation for dummies

Machine-learning code sorts through telescope data

Ball Aerospace tests electronically-steered antenna with Telesat's LEO Phase 1 satellite

Use a microscope as a shovel? UConn researchers dig it

ENERGY TECH
Where Is Earth's Submoon?

Planetary collision that formed the Moon made life possible on Earth

Astronomers find star material could be building block of life

Double star system flips planet-forming disk into pole position

ENERGY TECH
New Horizons' Newest and Best-Yet View of Ultima Thule

Missing link in planet evolution found

Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.