. 24/7 Space News .
VENUSIAN HEAT
Purported phosphine on Venus more likely to be ordinary sulfur dioxide,
by James Urton for UW News
Seattle WA (SPX) Jan 28, 2021

ESA file image showing the porported signature for phosphine in the atmosphere of Venus.

In September, a team led by astronomers in the United Kingdom announced that they had detected the chemical phosphine in the thick clouds of Venus. The team's reported detection, based on observations by two Earth-based radio telescopes, surprised many Venus experts. Earth's atmosphere contains small amounts of phosphine, which may be produced by life. Phosphine on Venus generated buzz that the planet, often succinctly touted as a "hellscape," could somehow harbor life within its acidic clouds.

Since that initial claim, other science teams have cast doubt on the reliability of the phosphine detection. Now, a team led by researchers at the University of Washington has used a robust model of the conditions within the atmosphere of Venus to revisit and comprehensively reinterpret the radio telescope observations underlying the initial phosphine claim. As they report in a paper accepted to the Astrophysical Journal and posted Jan. 25 to the preprint site arXiv, the U.K.-led group likely wasn't detecting phosphine at all.

"Instead of phosphine in the clouds of Venus, the data are consistent with an alternative hypothesis: They were detecting sulfur dioxide," said co-author Victoria Meadows, a UW professor of astronomy. "Sulfur dioxide is the third-most-common chemical compound in Venus' atmosphere, and it is not considered a sign of life."

The team behind the new study also includes scientists at NASA's Caltech-based Jet Propulsion Laboratory, the NASA Goddard Space Flight Center, the Georgia Institute of Technology, the NASA Ames Research Center and the University of California, Riverside.

The UW-led team shows that sulfur dioxide, at levels plausible for Venus, can not only explain the observations but is also more consistent with what astronomers know of the planet's atmosphere and its punishing chemical environment, which includes clouds of sulfuric acid.

In addition, the researchers show that the initial signal originated not in the planet's cloud layer, but far above it, in an upper layer of Venus' atmosphere where phosphine molecules would be destroyed within seconds. This lends more support to the hypothesis that sulfur dioxide produced the signal.

Both the purported phosphine signal and this new interpretation of the data center on radio astronomy. Every chemical compound absorbs unique wavelengths of the electromagnetic spectrum, which includes radio waves, X-rays and visible light. Astronomers use radio waves, light and other emissions from planets to learn about their chemical composition, among other properties.

In 2017 using the James Clerk Maxwell Telescope, or JCMT, the U.K.-led team discovered a feature in the radio emissions from Venus at 266.94 gigahertz. Both phosphine and sulfur dioxide absorb radio waves near that frequency. To differentiate between the two, in 2019 the same team obtained follow-up observations of Venus using the Atacama Large Millimeter/submillimeter Array, or ALMA.

Their analysis of ALMA observations at frequencies where only sulfur dioxide absorbs led the team to conclude that sulfur dioxide levels in Venus were too low to account for the signal at 266.94 gigahertz, and that it must instead be coming from phosphine.

In this new study by the UW-led group, the researchers started by modeling conditions within Venus' atmosphere, and using that as a basis to comprehensively interpret the features that were seen - and not seen - in the JCMT and ALMA datasets.

"This is what's known as a radiative transfer model, and it incorporates data from several decades' worth of observations of Venus from multiple sources, including observatories here on Earth and spacecraft missions like Venus Express," said lead author Andrew Lincowski, a researcher with the UW Department of Astronomy.

The team used that model to simulate signals from phosphine and sulfur dioxide for different levels of Venus' atmosphere, and how those signals would be picked up by the JCMT and ALMA in their 2017 and 2019 configurations. Based on the shape of the 266.94-gigahertz signal picked up by the JCMT, the absorption was not coming from Venus' cloud layer, the team reports. Instead, most of the observed signal originated some 50 or more miles above the surface, in Venus' mesosphere. At that altitude, harsh chemicals and ultraviolet radiation would shred phosphine molecules within seconds.

"Phosphine in the mesosphere is even more fragile than phosphine in Venus' clouds," said Meadows. "If the JCMT signal were from phosphine in the mesosphere, then to account for the strength of the signal and the compound's sub-second lifetime at that altitude, phosphine would have to be delivered to the mesosphere at about 100 times the rate that oxygen is pumped into Earth's atmosphere by photosynthesis."

The researchers also discovered that the ALMA data likely significantly underestimated the amount of sulfur dioxide in Venus' atmosphere, an observation that the U.K.-led team had used to assert that the bulk of the 266.94-gigahertz signal was from phosphine.

"The antenna configuration of ALMA at the time of the 2019 observations has an undesirable side effect: The signals from gases that can be found nearly everywhere in Venus' atmosphere - like sulfur dioxide - give off weaker signals than gases distributed over a smaller scale," said co-author Alex Akins, a researcher at the Jet Propulsion Laboratory.

This phenomenon, known as spectral line dilution, would not have affected the JCMT observations, leading to an underestimate of how much sulfur dioxide was being seen by JCMT.

"They inferred a low detection of sulfur dioxide because of that artificially weak signal from ALMA," said Lincowski. "But our modeling suggests that the line-diluted ALMA data would have still been consistent with typical or even large amounts of Venus sulfur dioxide, which could fully explain the observed JCMT signal."

"When this new discovery was announced, the reported low sulfur dioxide abundance was at odds with what we already know about Venus and its clouds," said Meadows. "Our new work provides a complete framework that shows how typical amounts of sulfur dioxide in the Venus mesosphere can explain both the signal detections, and non-detections, in the JCMT and ALMA data, without the need for phosphine."

With science teams around the world following up with fresh observations of Earth's cloud-shrouded neighbor, this new study provides an alternative explanation to the claim that something geologically, chemically or biologically must be generating phosphine in the clouds.

But though this signal appears to have a more straightforward explanation - with a toxic atmosphere, bone-crushing pressure and some of our solar system's hottest temperatures outside of the sun - Venus remains a world of mysteries, with much left for us to explore.

Research paper


Related Links
University Of Washington
Venus Express News and Venusian Science


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


VENUSIAN HEAT
Back to Venus armed with laboratory findings
Munich, Germany (SPX) Jan 19, 2021
Venus's impenetrable atmosphere has long made it difficult to conduct a thorough investigation of our neighbouring planet. In a step forward, by conducting laboratory experiments scientists from the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) have now developed a way of determining the nature of the planet's surface using new instruments from orbit. The entire surface of Venus can now be mapped mineralogically for the first time, addressing a large gap in planetary research. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

VENUSIAN HEAT
NASA and Boeing target new launch date for next Starliner flight test

Axiom Space reveals historic first private crew to visit ISS

NASA may limit its presence in Russia over shrinking cooperation on ISS

Showtime for ColKa

VENUSIAN HEAT
NASA Marshall, SpaceX team celebrates engines of success

Framework agreement facilitates future slot bookings by ESA

Hot Fire met many objectives, test assessment underway

SpaceX rocket deploys record-setting cargo

VENUSIAN HEAT
Purdue scientist ready for Mars rover touchdown

New Mars rover may collect first sounds recorded on another planet

Six things to know about NASA's Mars helicopter on its way to Mars

Crater study offers window on temperatures 3.5 billion years ago

VENUSIAN HEAT
China's space tracking ship completes satellite launch monitoring

China's space station core module, cargo craft pass factory review

Key modules for China's next space station ready for launch

Major space station components cleared for operations

VENUSIAN HEAT
Barbs fly over satellite projects from Musk, Bezos

UN and UK sign agreement to promote space sustainability

Kepler Communications announces successful launch of 8 new GEN1 satellites

China launches new mobile telecommunication satellite

VENUSIAN HEAT
3D printing to pave the way for Moon colonization

NASA's Deep Space Network welcomes a new dish to the family

Keep this surface dirty

D-Orbit's ION satellite carrier rides SpaceX's Falcon 9 to orbit

VENUSIAN HEAT
CHEOPS finds unique planetary system

Holding the system of HR 8799 together

The seven rocky planets of TRAPPIST-1 seem to have very similar compositions

The 7 rocky TRAPPIST-1 planets may be made of similar stuff

VENUSIAN HEAT
A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future

Dark Storm on Neptune reverses direction, possibly shedding a fragment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.